year 17, Issue 1 (January - February (Inpress) 2023)                   Iran J Med Microbiol 2023, 17(1): 7-7 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khademi P, Ownagh A, Mardani K, Khalili M. PCR-RFLP of Coxiella burnetii Plasmids Isolated from Raw Milk Samples in Iran. Iran J Med Microbiol 2023; 17 (1) :7-7
URL: http://ijmm.ir/article-1-1722-en.html
1- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
2- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran , ownagh@yahoo.com
3- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
4- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
Abstract:   (546 Views)

Background and Aim: Several methods have been employed to identify Coxiella burnetii isolates based on the specific Coxiella burnetii QpH1 plasmid to distinguish the acute form from the chronic form of Q fever disease in humans and animals owing to the presence of unique gene sequences in this plasmid. Therefore, the present study aimed to investigate the panel of nucleic acid fragments resulting from the enzymatic cleavage in the QpH1 plasmid isolated from cow and buffalo milk by nested polymerase chain reaction (Nested-PCR).
Materials and Methods: A total of 86 isolates of Coxiella burnetii QpH1 plasmid, which were confirmed by the Nested-PCR method in 2018, were used to determine the RFLP panel of the QpH1 plasmid. Plasmids were first extracted with the kit and were then affected by the Hph1 restriction enzyme. Additionally, 4 nucleic acid samples were sent to Pishgam Company for sequencing with the IS1111 gene primer.
Results: Based on the results of the PCR-RFLP test, all plasmid samples showed a similar two-fragment pattern under the influence of Hph1. The results of the nucleic acid sequencing of all 4 samples indicated that they had a Coxiella burnetii type (Nine Mile RSA493 strain).
Conclusion: RFLP patterns exhibited no difference on the Coxiella burnetii QpH1 plasmid isolated from cow and buffalo milk. Hence, all isolates were genetically identical, and the infection in animals could originate from one Coxiella burnetii strain (Nine Mile RSA493 strain).

     
Type of Study: Original Research Article | Subject: Zoonoses Research
Received: 2022/04/13 | Accepted: 2022/09/11 | ePublished: 2023/01/20

References
1. Chochlakis D, Santos AS, Giadinis ND, Papadopoulos D, Boubaris L, Kalaitzakis E, et al. Genotyping of Coxiella burnetii in sheep and goat abortion samples. BMC Microbiol. 2018;18(1):1-9. [DOI:10.1186/s12866-018-1353-y] [PMID] [PMCID]
2. Sobotta K, Hillarius K, Jiménez PH, Kerner K, Heydel C, Menge C. Interaction of Coxiella burnetii Strains of Different Sources and Genotypes with Bovine and Human Monocyte-Derived Macrophages. Front Cell Infect Microbiol. 2018;7:543-. [DOI:10.3389/fcimb.2017.00543] [PMID] [PMCID]
3. Hendrix LR, Samuel JE, Mallavia LP. Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. Microbiology. 1991;137(2):269-76. [DOI:10.1099/00221287-137-2-269] [PMID]
4. Heinzen R, Stiegler G, Whiting L, Schmitt S, Mallavia L, Frazier M. Use of Pulsed Field Gel Electrophoresis to Differentiate Coxiella burnetii Strains a. Ann N Y Acad Sci. 1990;590(1):504-13. [DOI:10.1111/j.1749-6632.1990.tb42260.x] [PMID]
5. Willems H, Ritter M, Jäger C, Thiele D. Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetii Scurry Q217. J Bacteriol. 1997;179(10):3293-7. [DOI:10.1128/jb.179.10.3293-3297.1997] [PMID] [PMCID]
6. Savinelli EA, Mallavia LP. Comparison of Coxiella burnetii plasmids to homologous chromosomal sequences present in a plasmidless endocarditis-causing isolate. Ann N Y Acad Sci. 1990;590:523-33. [DOI:10.1111/j.1749-6632.1990.tb42262.x] [PMID]
7. Jäger C, Lautenschläger S, Willems H, Baljer G. Coxiella burnetii plasmid types QpDG and QpH1 are closely related and likely identical. Vet Microbiol. 2002;89(2-3):161-6. [DOI:10.1016/S0378-1135(02)00155-4] [PMID]
8. Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, Tyczka J, et al. Coxiella burnetii genotyping. Emerg Infect Dis. 2005;11(8):1211. [DOI:10.3201/eid1108.041354] [PMID] [PMCID]
9. Arricau-Bouvery N, Hauck Y, Bejaoui A, Frangoulidis D, Bodier CC, Souriau A, et al. Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. Bmc Microbiol. 2006;6(1):1-14. [DOI:10.1186/1471-2180-6-38] [PMID] [PMCID]
10. Svraka S, Toman R, Skultety L, Slaba K, Homan WL. Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett. 2006;254(2):268-74. [DOI:10.1111/j.1574-6968.2005.00036.x] [PMID]
11. Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol. 2006;188(7):2309-24. [DOI:10.1128/JB.188.7.2309-2324.2006] [PMID] [PMCID]
12. Dragan AL, Voth DE. Coxiella burnetii: international pathogen of mystery. Microbes Infect. 2020;22(3):100-10. [DOI:10.1016/j.micinf.2019.09.001] [PMID] [PMCID]
13. Hoover T, Vodkin M, Williams J. A Coxiella burnetti repeated DNA element resembling a bacterial insertion sequence. J Bacteriol. 1992;174(17):5540-8. [DOI:10.1128/jb.174.17.5540-5548.1992] [PMID] [PMCID]
14. Partridge SR, Hall RM. The IS 1111 family members IS 4321 and IS 5075 have subterminal inverted repeats and target the terminal inverted repeats of Tn 21 family transposons. J Bacteriol. 2003;185(21):6371-84. [DOI:10.1128/JB.185.21.6371-6384.2003] [PMID] [PMCID]
15. Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, et al. From Q fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev. 2017;30(1):115-90. [DOI:10.1128/CMR.00045-16] [PMID] [PMCID]
16. Khalili M, Sakhaee E, Aflatoonian MR, Shahabi-Nejad N. Herd-prevalence of Coxiella burnetii (Q fever) antibodies in dairy cattle farms based on bulk tank milk analysis. Asian Pac J Trop Med. 2011;4(1):58-60. [DOI:10.1016/S1995-7645(11)60033-3] [PMID]
17. Zhang G, Hotta A, Mizutani M, Ho T, Yamaguchi T, Fukushi H, et al. Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol. 1998;36(8):2210-3. [DOI:10.1128/JCM.36.8.2210-2213.1998] [PMID] [PMCID]
18. Rijks JM, Roest HIJ, van Tulden PW, Kik MJL, Ijzer J, Gröne A. Coxiella burnetii infection in roe deer during Q fever epidemic, the Netherlands. Emerg Infect Dis. 2011;17(12):2369-71. [DOI:10.3201/eid1712.110580] [PMID] [PMCID]
19. Khademi P, Mahzounieh MR, Kahrizsangi AE, Shdravan E. Genomic detection of Coxiella burnetii in goat milk samples in animal farms Khorramabad Township, Iran. Pajoohandeh J. 2014;19(3):162-8.
20. Khademi P, Ownagh A, Ataei B, Kazemnia A, Enferadi A, Khalili M, et al. Prevalence of C. burnetii DNA in sheep and goats milk in the northwest of Iran. Int J Food Microbiol. 2020;331:108716. [DOI:10.1016/j.ijfoodmicro.2020.108716] [PMID]
21. Khademi P, Ownagh A, Mardani K, Khalili M. Prevalence of Coxiella burnetii in milk collected from buffalo (water buffalo) and cattle dairy farms in Northwest of Iran. Comp Immunol Microbiol Infect Dis. 2019;67:101368. [DOI:10.1016/j.cimid.2019.101368] [PMID]
22. Khalili M, Mosavi M, Diali HG, Mirza HN. Serologic survey for Coxiella burnetii phase II antibodies among slaughterhouse workers in Kerman, southeast of Iran. Asian Pac J Trop Biomed. 2014;4:S209-S12. [DOI:10.12980/APJTB.4.2014C1268] [PMID] [PMCID]
23. Khalili M, Shahabi-Nejad N, Golchin M. Q fever serology in febrile patients in southeast Iran. Trans R Soc Trop Med Hyg. 2010;104(9):623-4. [DOI:10.1016/j.trstmh.2010.04.002] [PMID]
24. Khanzadi S, Jamshidi A, Razmyar J, Borji S. Identification of Coxiella burnetii by touch-down PCR assay in unpasteurized milk and dairy products in North-East of Iran. Iran J Vet Med. 2014;8(1):15-9.
25. Khademi P, Ownagh A, Ataei B, Kazemnia A, Eydi J, Khalili M, et al. Molecular detection of Coxiella burnetii in horse sera in Iran. Comp Immunol Microbiol Infect Dis. 2020;72:101521. [DOI:10.1016/j.cimid.2020.101521] [PMID] [PMCID]
26. Yaghmaie F, Esmaeili S, Francis SA, Mostafavi E. Q fever endocarditis in Iran: A case report. J Infect Public Health. 2015;8(5):498-501. [DOI:10.1016/j.jiph.2014.12.004] [PMID]
27. Hemsley CM, O'Neill PA, Essex-Lopresti A, Norville IH, Atkins TP, Titball RW. Extensive genome analysis of Coxiella burnetii reveals limited evolution within genomic groups. BMC Geno. 2019;20(1):1-17. [DOI:10.1186/s12864-019-5833-8] [PMID] [PMCID]
28. Körner S, Makert GR, Ulbert S, Pfeffer M, Mertens-Scholz K. The prevalence of Coxiella Burnetii in hard ticks in Europe and their role in Q fever transmission revisited-A systematic review. Front Vet Sci. 2021;8:655715. [DOI:10.3389/fvets.2021.655715] [PMID] [PMCID]
29. Astobiza I, Tilburg JJ, Piñero A, Hurtado A, García-Pérez AL, Nabuurs-Franssen MH, et al. Genotyping of Coxiella burnetii from domestic ruminants in northern Spain. BMC Vet Res. 2012;8:241. [DOI:10.1186/1746-6148-8-241] [PMID] [PMCID]
30. Porten K, Rissland J, Tigges A, Broll S, Hopp W, Lunemann M, et al. A super-spreading ewe infects hundreds with Q fever at a farmers' market in Germany. BMC Infect Dis. 2006;6(1):147. [DOI:10.1186/1471-2334-6-147] [PMID] [PMCID]
31. Loftis AD, Priestley RA, Massung RF. Detection of Coxiella burnetii in commercially available raw milk from the United States. Foodborne Pathog Dis. 2010;7(12):1453-6. [DOI:10.1089/fpd.2010.0579] [PMID]
32. Hilbert A. Coxiella burnetii-Epidemiologische Untersuchungen zum Vorkommen und zur Verbreitung in Schaf-und Rinderbeständen in Deutschland 2016.
33. Špitalská E, Kocianová E. Detection of Coxiella burnetii in ticks collected in Slovakia and Hungary. Eur J Epidemiol. 2003;18(3):263-6. [DOI:10.1023/A:1023330222657] [PMID]
34. Spyridaki I, Psaroulaki A, Loukaides F, Antoniou M, Hadjichristodolou C, Tselentis Y. Isolation of Coxiella burnetii by a centrifugation shell-vial assay from ticks collected in Cyprus: detection by nested polymerase chain reaction (PCR) and by PCR-restriction fragment length polymorphism analyses. Am J Trop Med Hyg. 2002;66(1):86-90. [DOI:10.4269/ajtmh.2002.66.86] [PMID]
35. Keshavamurthy R, Singh B, Kalambhe D, Aulakh R, Dhand N. Identification of risk factors associated with Coxiella burnetii infection in cattle and buffaloes in India. Prev Vet Med. 2020:105081. [DOI:10.1016/j.prevetmed.2020.105081] [PMID]
36. Porter SR, Czaplicki G, Mainil J, Guattéo R, Saegerman C. Q Fever: current state of knowledge and perspectives of research of a neglected zoonosis. Int J Microbiol. 2011;2011. [DOI:10.1155/2011/248418] [PMID] [PMCID]
37. Spyridaki I, Psaroulaki A, Aransay A, Scoulica E, Tselentis Y. Diagnosis of quinolone-resistant Coxiella burnetii strains by PCR-RFLP. J Clin Lab Anal. 2000;14(2):59-63. https://doi.org/10.1002/(SICI)1098-2825(2000)14:2<59::AID-JCLA4>3.0.CO;2-P [DOI:10.1002/(SICI)1098-2825(2000)14:23.0.CO;2-P]
38. Jang Y-R, Song JS, Jin CE, Ryu B-H, Park SY, Lee S-O, et al. Molecular detection of Coxiella burnetii in heart valve tissue from patients with culture-negative infective endocarditis. Medicine. 2018;97(34). [DOI:10.1097/MD.0000000000011881] [PMID] [PMCID]
39. Capin GA, Emre Z, Canpolat S, Vatansever Y, Duzgun A. Detection of Coxiella burnetii from ticks by polymerase chain reaction and restriction fragment length polymorphism. 2013. [DOI:10.1501/Vetfak_0000002590]
40. Barberio A. Coxiella burnetii infection in dairy cows and goats: Assessment of diagnostic methods, and evaluation of immune response in shedders. 2016.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc