year 15, Issue 1 (January & February 2021)                   Iran J Med Microbiol 2021, 15(1): 18-45 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghaderi R S, Kazemi M, Soleimanpour S. Nanoparticles are More Successful Competitor than Antibiotics in Treating Bacterial Infections: A Review of the Literature. Iran J Med Microbiol. 2021; 15 (1) :18-45
URL: http://ijmm.ir/article-1-1125-en.html
1- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
2- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
3- Chemistry Department, Payam-e Noor University, Mashhad, Iran , mo.kazemi2009@yahoo.com
Abstract:   (664 Views)

The crisis of antibiotic resistance in bacteria is one of the most important concerns of World Health Organization (WHO), which requires further global research and studies in order to develop more effective antimicrobial compounds. Nanoparticles as an alternative to antibiotics have been widely used to target bacteria and they are useful in the treatment of bacterial infections. In this narrative review study, the advantages of using nanoparticles against bacteria are discussed. Due to their unique properties compared to the bulk form, nanoparticles have a high potential to be used as carriers and adjuvants with the ability to strengthen the immune system and fight bacteria using several mechanisms simultaneously. Recently, a number of nanoparticle-based drugs have been designed and used for clinical use as an alternative to antibiotics. Despite special attention to nanoparticles, their antibacterial mechanisms are not very well known. However, in this study, we have examined in detail a number of accepted antibacterial mechanisms such as oxidative stress induced by ROS and the function of nanoparticles for releasing soluble metal ions. Further over, we also examined important factors affecting the antibacterial properties of nanoparticles, including size, charge, zeta potential, and surface morphology will be investigated too. The limitations of the research will also be discussed.

Full-Text [PDF 1793 kb]   (145 Downloads) |   |   Full-Text (HTML)  (53 Views)  
Type of Study: Review | Subject: Antimicrobial Substances
Received: 2020/05/3 | Accepted: 2020/11/10 | ePublished: 2021/01/10

References
1. Ghaderi R, Yaghoubi A, Hashemy I, Ghazvini K. The prevalence of genes encoding ESBL among clinical isolates of Escherichia coli in Iran: A systematic review and meta-analysis. Gene Reports. 2019;100562. [DOI:10.1016/j.genrep.2019.100562]
2. Hsueh P-R. New Delhi metallo-ss-lactamase-1 (NDM-1): an emerging threat among Enterobacteriaceae. Vol. 109, Journal of the Formosan Medical Association = Taiwan yi zhi. Singapore; 2010. p. 685-7. [DOI:10.1016/S0929-6646(10)60111-8]
3. Poole K. Mechanisms of bacterial biocide and antibiotic resistance. 2002;(Levy 2000):55-64. [DOI:10.1046/j.1365-2672.92.5s1.8.x]
4. Knetsch MLW, Koole LH. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. 2011;340-66. [DOI:10.3390/polym3010340]
5. Gunti L, Dass RS, Kalagatur NK. Phytofabrication of Selenium Nanoparticles From Emblica officinalis Fruit Extract and Exploring Its Biopotential Applications : Antioxidant , Antimicrobial , and Biocompatibility. 2019;10(April):1-17. [DOI:10.3389/fmicb.2019.00931] [PMID] [PMCID]
6. Journal AI, Sowndarya P, Ramkumar G, Shivakumar MS. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells, Nanomedicine, Biotechnol [Internet]. 2017;0(0):1490-5. Available from: [DOI:10.1080/21691401.2016.1252383] [PMID]
7. Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel). 2018;10(1):31. [DOI:10.3390/polym10010031] [PMID] [PMCID]
8. Kazemi M. Evaluation of Antifungal and Photocatalytic Activities of Gelatin-Stabilized Evaluation of Antifungal and Photocatalytic Activities of Gelatin ‑ Stabilized Selenium Oxide Nanoparticles. J Inorg Organomet Polym Mater [Internet]. 2020;(February). Available from: [DOI:10.1007/s10904-020-01462-4]
9. Ramalingam B, Parandhaman T, Das SK. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces. 2016 Feb;8(7):4963-76. [DOI:10.1021/acsami.6b00161] [PMID]
10. Nagy A, Harrison A, Sabbani S, Munson RSJ, Dutta PK, Waldman WJ. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine. 2011;6:1833-52. [DOI:10.2147/IJN.S24019] [PMID] [PMCID]
11. Kolhatkar AG, Jamison AC, Litvinov D, Willson RC, Lee TR. Tuning the Magnetic Properties of Nanoparticles. 2013. [DOI:10.1002/chin.201451225]
12. Aung MS, Zi H, Nwe KM, Maw WW, Aung MT, Min WW, et al. Drug resistance and genetic characteristics of clinical isolates of staphylococci in Myanmar: high prevalence of PVL among methicillin-susceptible Staphylococcus aureus belonging to various sequence types. New microbes new Infect. 2016 Mar;10:58-65. [DOI:10.1016/j.nmni.2015.12.007] [PMID] [PMCID]
13. Mehdipour Moghaddam MJ, Mirbagheri AA, Salehi Z, Habibzade SM. Prevalence of Class 1 Integrons and Extended Spectrum Beta Lactamases among Multi-Drug Resistant Escherichia coli Isolates from North of Iran. Iran Biomed J. 2015;19(4):233-9.
14. Kazemi M, Akbari A, Zarrinfar H, Soleimanpour S, Sabouri Z, Khatami M, et al. Evaluation of Antifungal and Photocatalytic Activities of Gelatin-Stabilized Selenium Oxide Nanoparticles. J Inorg Organomet Polym Mater [Internet]. 2020; Available from: [DOI:10.1007/s10904-020-01462-4]
15. Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog. 2016 Jun;95:32-42. [DOI:10.1016/j.micpath.2016.02.009] [PMID]
16. Phondani PC, Bhatt A, Elsarrag E, Horr YA. Ethnobotanical magnitude towards sustainable utilization of wild foliage in Arabian Desert. J Tradit Complement Med [Internet]. 2016;6(3):209-18. [DOI:10.1016/j.jtcme.2015.03.003] [PMID] [PMCID]
17. Qin J, Yang T, Wang H, Feng T, Liu X. Potential Predictors for Serofast State after Treatment among HIV-Negative Persons with Syphilis in China: A Systematic Review and Meta-Analysis. Iran J Public Health [Internet]. 2015 Feb [cited 2018 Sep 20];44(2):155-69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25905049
18. Liu Y, Hardie J, Zhang X, Rotello VM. Effects of engineered nanoparticles on the innate immune system. 2018;25-32. [DOI:10.1016/j.smim.2017.09.011] [PMID] [PMCID]
19. Luo Y, Chang LW, Lin P. Metal-Based Nanoparticles and the Immune System : Activation , Inflammation , and Potential Applications. 2015;2015(Figure 1). [DOI:10.1155/2015/143720] [PMID] [PMCID]
20. Sadrieh N, Dobrovolskaia MA. Minireview: Nanoparticles and the Immune System '. 2010;151(February):458-65. [DOI:10.1210/en.2009-1082] [PMID] [PMCID]
21. Naseri N, Valizadeh H, Zakeri-Milani P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv Pharm Bull [Internet]. 2015/09/19. 2015 Sep;5(3):305-13. [DOI:10.15171/apb.2015.043] [PMID] [PMCID]
22. Thukral DK, Dumoga S, Mishra AK. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery. Curr Drug Deliv. 2014;11(6):771-91. [DOI:10.2174/156720181106141202122335] [PMID]
23. Jelinkova P, Mazumdar A, Sur VP, Kociova S, Dolezelikova K, Jimenez AMJ, et al. Nanoparticle-drug conjugates treating bacterial infections. J Control Release [Internet]. 2019;307:166-85. [DOI:10.1016/j.jconrel.2019.06.013] [PMID]
24. Andrade F, Rafael D, Videira M, Ferreira D, Sosnik A, Sarmento B. Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1816-27. [DOI:10.1016/j.addr.2013.07.020] [PMID] [PMCID]
25. Qi G, Li L, Yu F, Wang H. Vancomycin-modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic gram-positive bacteria over macrophage-like cells. ACS Appl Mater Interfaces. 2013 Nov;5(21):10874-81. [DOI:10.1021/am403940d] [PMID]
26. Liu Y, Tee JK, Chiu GNC. Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr Pharm Des. 2015;21(19):2629-42. [DOI:10.2174/1381612821666150416102058] [PMID]
27. Xiong M-H, Li Y-J, Bao Y, Yang X-Z, Hu B, Wang J. Bacteria-responsive multifunctional nanogel for targeted antibiotic delivery. Adv Mater. 2012 Dec;24(46):6175-80. [DOI:10.1002/adma.201202847] [PMID]
28. Baig MS, Ahad A, Aslam M, Imam SS, Aqil M, Ali A. Application of Box-Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int J Biol Macromol. 2016 Apr;85:258-70. [DOI:10.1016/j.ijbiomac.2015.12.077] [PMID]
29. Wu XT, Hong PW, Suolang DJ, Zhou D, Stefan H. Drug-induced hypersensitivity syndrome caused by valproic acid as a monotherapy for epilepsy: First case report in Asian population. Epilepsy Behav Case Reports [Internet]. 2017;8:108-10. [DOI:10.1016/j.ebcr.2017.06.003] [PMID] [PMCID]
30. Qiu Z, Yu Y, Chen Z, Jin M, Yang D, Zhao Z, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci U S A. 2012 Mar;109(13):4944-9. [DOI:10.1073/pnas.1107254109] [PMID] [PMCID]
31. Lee N-Y, Ko W-C, Hsueh P-R. Nanoparticles in the Treatment of Infections Caused by Multidrug-Resistant Organisms. Front Pharmacol [Internet]. 2019;10:1153. Available from: https://www.frontiersin.org/article/10.3389/fphar.2019.01153 [DOI:10.3389/fphar.2019.01153] [PMID] [PMCID]
32. Baptista P V, Mccusker MP, Carvalho A, Ferreira DA. Nano-Strategies to Fight Multidrug Resistant Bacteria -" A Battle of the Titans ." 2018;9(July):1-26. [DOI:10.3389/fmicb.2018.01441] [PMID] [PMCID]
33. Ji Z-H, Li C-Y, Lv Y-G, Cao W, Chen Y-Z, Chen X-P, et al. The prevalence and trends of transfusion-transmissible infectious pathogens among first-time, voluntary blood donors in Xi'an, China between 1999 and 2009. Int J Infect Dis [Internet]. 2013;17(4):e259-62. [DOI:10.1016/j.ijid.2012.10.006] [PMID]
34. Li H, Chen Q, Zhao J, Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep. 2015 Jun;5:11033. [DOI:10.1038/srep11033] [PMID] [PMCID]
35. Lellouche J, Friedman A, Lahmi R, Gedanken A, Banin E. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles. Int J Nanomedicine. 2012;7:1175-88. [DOI:10.2147/IJN.S26770] [PMID] [PMCID]
36. Press D. Dual effects and mechanism of TiO 2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1 / 2 cell adhesion. 2015;(August 2013).
37. Nash KM, Ahmed S. Nanomedicine in the ROS-mediated pathophysiology: Applications and clinical advances. Nanomedicine Nanotechnology, Biol Med [Internet]. 2015;11(8):2033-40. [DOI:10.1016/j.nano.2015.07.003] [PMID] [PMCID]
38. Hu G, Guo M, Xu J, Wu F, Fan J, Huang Q, et al. Nanoparticles Targeting Macrophages as Potential Clinical Therapeutic Agents Against Cancer and Inflammation. Front Immunol [Internet]. 2019 Aug 21;10:1998. [DOI:10.3389/fimmu.2019.01998] [PMID] [PMCID]
39. Yu J, Zhang W, Li Y, Wang G, Yang L, Jin J, et al. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater. 2014 Dec;10(1):15001. [DOI:10.1088/1748-6041/10/1/015001] [PMID]
40. Wu B, Zhuang W-Q, Sahu M, Biswas P, Tang YJ. Cu-doped TiO(2) nanoparticles enhance survival of Shewanella oneidensis MR-1 under ultraviolet light (UV) exposure. Sci Total Environ. 2011 Oct;409(21):4635-9. [DOI:10.1016/j.scitotenv.2011.07.037] [PMID]
41. Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine [Internet]. 2018 Jun 5;13:3311-27. [DOI:10.2147/IJN.S165125] [PMID] [PMCID]
42. Jiang W, Mashayekhi H, Xing B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut [Internet]. 2009;157(5):1619-25. [DOI:10.1016/j.envpol.2008.12.025] [PMID]
43. Pan F, Xu A, Xia D, Yu Y, Chen G, Meyer M. Effects of octahedral molecular sieve on treatment performance , microbial metabolism , and microbial community in expanded granular sludge bed reactor Effects of octahedral molecular sieve on treatment performance , microbial metabolism , and microbial community in expanded granular sludge bed reactor. Water Res [Internet]. 2015;87(December):127-36. [DOI:10.1016/j.watres.2015.09.022] [PMID]
44. Zhang W, Li Y, Niu J, Chen Y. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 2013 Apr;29(15):4647-51. [DOI:10.1021/la400500t] [PMID]
45. Mukha IP, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, et al. [Antimicrobial activity of stable silver nanoparticles of a certain size]. Prikl Biokhim Mikrobiol. 2013;49(2):215-23. [DOI:10.1134/S0003683813020117] [PMID]
46. Lin J, Zhang H, Chen Z, Zheng Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010 Sep;4(9):5421-9. [DOI:10.1021/nn1010792] [PMID]
47. Sarwar A, Katas H, Samsudin SN, Zin NM. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles. PLoS One. 2015;10(4):e0123084. [DOI:10.1371/journal.pone.0123084] [PMID] [PMCID]
48. Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL. The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl Environ Microbiol. 2014 Dec;80(24):7758-70. [DOI:10.1128/AEM.02204-14] [PMID] [PMCID]
49. Wehling J, Dringen R, Zare RN, Maas M, Rezwan K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano. 2014 Jun;8(6):6475-83. [DOI:10.1021/nn502230m] [PMID]
50. Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011 Jun;90(6):1847-68. [DOI:10.1007/s00253-011-3213-7] [PMID] [PMCID]
51. Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nommiste E, et al. Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B. 2015 Jan;142:178-85. [DOI:10.1016/j.jphotobiol.2014.12.010] [PMID]
52. Erdem A, Metzler D, Cha DK, Huang CP. The short-term toxic effects of TiO₂nanoparticles toward bacteria through viability, cellular respiration, and lipid peroxidation. Environ Sci Pollut Res Int [Internet]. 2015;22(22):17917-24. [DOI:10.1007/s11356-015-5018-1] [PMID]
53. Nataraj N, Anjusree GS, Madhavan AA, Priyanka P, Sankar D, Nisha N, et al. Synthesis and anti-staphylococcal activity of TiO2 nanoparticles and nanowires in ex vivo porcine skin model. J Biomed Nanotechnol. 2014 May;10(5):864-70. [DOI:10.1166/jbn.2014.1756] [PMID]
54. Su Y, Zheng X, Chen Y, Li M, Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci Rep. 2015 Oct;5:15824. [DOI:10.1038/srep15824] [PMID] [PMCID]
55. Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005 Nov;71(11):7589-93. [DOI:10.1128/AEM.71.11.7589-7593.2005] [PMID] [PMCID]
56. Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012 Mar;33(7):2327-33. [DOI:10.1016/j.biomaterials.2011.11.057] [PMID]
57. Durmus NG, Taylor EN, Inci F, Kummer KM, Tarquinio KM, Webster TJ. Fructose-enhanced reduction of bacterial growth on nanorough surfaces. Int J Nanomedicine. 2012;7:537-45. [DOI:10.2147/IJN.S27957] [PMID] [PMCID]
58. Wang L, Hu C. The antimicrobial activity of nanoparticles : present situation and prospects for the future. 2017;1227-49. [DOI:10.2147/IJN.S121956] [PMID] [PMCID]
59. Amini Kafi-abad S, Rezvan H, Abolghasemi H, Talebian A. Prevalence and trends of human immunodeficiency virus, hepatitis B virus, and hepatitis C virus among blood donors in Iran, 2004 through 2007. Transfusion [Internet]. 2009 Oct;49(10):2214-20. [DOI:10.1111/j.1537-2995.2009.02245.x] [PMID]
60. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine. 2012 Aug;8(6):916-24. [DOI:10.1016/j.nano.2011.11.007] [PMID]
61. Pan F, Aihua X, Xia D, Yu Y, Chen G, Meyer M, et al. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor. Water Res. 2015 Dec 15;87:127-36. [DOI:10.1016/j.watres.2015.09.022] [PMID]
62. Lundberg ME, Becker EC, Choe S. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS One. 2013;8(5):e60993. [DOI:10.1371/journal.pone.0060993] [PMID] [PMCID]
63. Salem W, Leitner DR, Zingl FG, Schratter G, Prassl R, Goessler W, et al. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int J Med Microbiol. 2015 Jan;305(1):85-95. [DOI:10.1016/j.ijmm.2014.11.005] [PMID] [PMCID]
64. Slomberg DL, Lu Y, Broadnax AD, Hunter RA, Carpenter AW, Schoenfisch MH. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl Mater Interfaces. 2013 Oct;5(19):9322-9. [DOI:10.1021/am402618w] [PMID]
65. Esfandiari N, Simchi A, Bagheri R. Size tuning of Ag-decorated TiO(2) nanotube arrays for improved bactericidal capacity of orthopedic implants. J Biomed Mater Res A. 2014 Aug;102(8):2625-35. [DOI:10.1002/jbm.a.34934] [PMID]
66. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology. 2010 Sep;156(Pt 9):2630-40. [DOI:10.1099/mic.0.036681-0] [PMID]
67. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles : understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;1-20. [DOI:10.1186/s12951-017-0308-z] [PMID] [PMCID]
68. Cha S-H, Hong J, McGuffie M, Yeom B, VanEpps JS, Kotov NA. Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity. ACS Nano. 2015 Sep;9(9):9097-105. [DOI:10.1021/acsnano.5b03247] [PMID]
69. Ben-Sasson M, Zodrow KR, Genggeng Q, Kang Y, Giannelis EP, Elimelech M. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environ Sci Technol. 2014;48(1):384-93. [DOI:10.1021/es404232s] [PMID]
70. Arakha M, Pal S, Samantarrai D, Panigrahi TK. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Nat Publ Gr [Internet]. :1-12.
71. Mehmood S, Rehman MA, Ismail H, Mirza B, Bhatti AS. Significance of postgrowth processing of ZnO nanostructures on antibacterial activity against gram-positive and gram-negative bacteria. Int J Nanomedicine. 2015;10:4521-33. [DOI:10.2147/IJN.S83356] [PMID] [PMCID]
72. Peng Y, Lo S, Ou H, Lai S. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. J Hazard Mater [Internet]. 2010;183(1-3):754-8. [DOI:10.1016/j.jhazmat.2010.07.090] [PMID]
73. Saliani M, Jalal R. Effects of pH and Temperature on Antibacterial Activity of Zinc Oxide Nanofluid Against Escherichia coli O157 : H7 and Staphylococcus aureus. 2015;8(2). [DOI:10.5812/jjm.17115] [PMID] [PMCID]
74. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Alam MM, Khan AM, et al. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities : Potential role as nano-antibiotics. Nat Publ Gr [Internet]. 2016;(June):1-12. [DOI:10.1038/srep27689] [PMID] [PMCID]
75. Kazemi M, Akbari A, Feizi N. The Role of Green Reducing Agents in Gelatin-Based Synthesis of Colloidal Selenium Nanoparticles and Investigation of Their Antimycobacterial and Photocatalytic Properties.
76. Rudramurthy GR. Nanoparticles : Alternatives Against Drug-Resistant. 2016;1-30. [DOI:10.3390/molecules21070836] [PMID] [PMCID]
77. Zonaro E, Lampis S, Turner RJ, Qazi SJS, Vallini G. Biogenic selenium and tellurium nanoparticles synthesized by environmental microbial isolates efficaciously inhibit bacterial planktonic cultures and biofilms. Front Microbiol [Internet]. 2015;6:584. [DOI:10.3389/fmicb.2015.00584] [PMID] [PMCID]
78. Gordon O, Slenters TV, Brunetto PS, Villaruz AE, Sturdevant DE, Otto M, et al. Silver coordination polymers for prevention of implant infection: thiol interaction, impact on respiratory chain enzymes, and hydroxyl radical induction. Antimicrob Agents Chemother. 2010;54(10):4208-18. [DOI:10.1128/AAC.01830-09] [PMID] [PMCID]
79. Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, et al. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. Int J Nanomedicine. 2016;11:1889. [DOI:10.2147/IJN.S102488] [PMID] [PMCID]
80. Esmaeillou M, Zarrini G, Rezaee MA. Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance bacteria. Adv Pharm Bull. 2017;7(3):479. [DOI:10.15171/apb.2017.058] [PMID] [PMCID]
81. Lai H-Z, Chen W-Y, Wu C-Y, Chen Y-C. Potent antibacterial nanoparticles for pathogenic bacteria. ACS Appl Mater Interfaces. 2015;7(3):2046-54. [DOI:10.1021/am507919m] [PMID]
82. Saeb A, Alshammari AS, Al-Brahim H, Al-Rubeaan KA. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Sci World J. 2014;2014. [DOI:10.1155/2014/704708] [PMID] [PMCID]
83. Payne J, Waghwani H, Connor M, Hamilton W, Dowling S, Moolani H, et al. Novel Synthesis of Kanamycin Conjugated Gold Nanoparticles with Potent Antibacterial Activity. Front Microbiol. 2016;7. [DOI:10.3389/fmicb.2016.00607] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc