year 12, Issue 6 (January - February 2019)                   Iran J Med Microbiol 2019, 12(6): 419-431 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hosseini N, Akhavan A, Nowruzi B. Detection and Relation of Polyketide Synthase (PKSs) Genes With Antimicrobial Activity in Terrestrial Cyanobacteria of Lavasan. Iran J Med Microbiol 2019; 12 (6) :419-431
URL: http://ijmm.ir/article-1-860-en.html
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran
3- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran , bahare77biol@gmail.com
Abstract:   (7357 Views)
Background and Aims: Cyanobacteria are considered as favorable source for new pharmaceutical compounds. To date, the majority of bioactive metabolites isolated from cyanobacteria are either polyketides (PKSs) or non-ribosomal peptides. Despite of several worldwide studies on prevalence of PKSs, none of them included the terrestrial cyanobacteria of the Lavasan. Therefore, this study aimed to detectthe PKS genes and correlation of the presence of these genes with antimicrobial compounds synthesis.
Materials and Methods: Morphological and molecular identification of the terrestrial strains was performed after culture and purification. Amplification of polyketide synthase and phylogenetic trees were used for ‎phylogenetic analysis. Nucleotide and protein sequences were deposited in GenBank. Lastly, to show the correlation of this gene with antimicrobial compounds synthesis, antibiogram bioassay was used.
Results: Phylogentic analysis revealed that most of the identified 16SrRNA genes and PKS domains had more than 90% similarity to their closest matches in the Gen-Bank. In addition, antibiogram assessment showedthe different pattern of inhibition, indicating the involvement of variety antimicrobial substances.
Conclusions: According to the results of this sudy, it seems the antibiogram bioassay and molecular detection of polyketide synthase genes are useful techniques for the assessment of productive species of natural products and the possible role of polyketide synthase enzyme complexes in the biosynthesis of biologically active compounds.
 
 

Full-Text [PDF 1154 kb]   (1899 Downloads)    
Type of Study: Original Research Article | Subject: Microbial Biotechnology
Received: 2018/07/23 | Accepted: 2019/02/10 | ePublished: 2019/03/29

References
1. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, De Marsac NT, Rippka R, Herdman M. Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proceedings of the National Academy of Sciences. 2013; 110(3): 1053-8. [DOI:10.1073/pnas.1217107110] [PMID] [PMCID]
2. Pancrace C, Gugger M, Calteau A. Genomics of NRPS/PKS Biosynthetic Gene Clusters in Cyanobacteria. Cyanobacteria: Omics and Manipulation. CAISTER ACADEMIC PRESS. 2017; 32: 55-74. [DOI:10.21775/9781910190555.03] [PMCID]
3. Nowruzi B, Fahimi H, Ordodari N, Assareh R. Genetic analysis of polyketide synthase and peptide synthase genes of‎ cyanobacteria as a mining tool for new pharmaceutical compounds. Journal of Pharmaceutical & Health Sciences. 2017; 5(2): 139-50.
4. Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv. 2009; 27(4): 521-39. [DOI:10.1016/j.biotechadv.2009.04.009] [PMID]
5. Tan LT. Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry. 2007; 68(7): 954-79. [DOI:10.1016/j.phytochem.2007.01.012] [PMID]
6. Liu L, Jokela J, Wahlsten M, Nowruzi B, Permi P, Zhang YZ, et al. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. Journal of natural products. 2014; 77(8): 1784-90. [DOI:10.1021/np500106w] [PMID]
7. Komárek J, Kaštovský J, Mareš J, Johansen JR. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia. 2014; 86: 295-33.
8. Maneeruttanarungroj C, Incharoensakdi A. Rapid method for DNA isolation from a tough cell wall green alga Tetraspora sp. CU2551. World J Microbiol Biotechnol. 2016; 32(6):99. [DOI:10.1007/s11274-016-2055-y] [PMID]
9. Ehrenreich IM, Waterbury JB, Webb EA. Distribution and diversity of natural product genes in marine and freshwater cyanobacterial cultures and genomes. Appl Environ Microbiol. 2005; 71(11): 7401-13. [DOI:10.1128/AEM.71.11.7401-7413.2005] [PMID] [PMCID]
10. Nowruzi B, Blanco S, Nejadsattari T. Chemical and Molecular Evidences for the Poisoning of a Duck by Anatoxin-a, Nodularin and Cryptophycin at the Coast of Lake Shoormast (Mazandaran Province, Iran). Int J Algae. 2018; 20(4). [DOI:10.1615/InterJAlgae.v20.i4.30]
11. Espinel-Ingroff A. Standardized disk diffusion method for yeasts. Clin Microbiol Newsl. 2007; 29(13): 97-100. [DOI:10.1016/j.clinmicnews.2007.06.001]
12. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification and toxigenic potential of a Nostoc sp. Algae. 2012; 27(4): 303-13. [DOI:10.4490/algae.2012.27.4.303]
13. Khairy HM, El-Kassas HY. Active substance from some blue green algal species used as antimicrobial agents. Afr J Biotechnol. 2010; 9(19): 2789-800.
14. El-Sheekh MM, Dawah AM, El-Rahman AM, El-Adel HM, El-Hay RA. Antimicrobial activity of the cyanobacteriaAnabaena wisconsinense andOscillatoria curviceps against pathogens of fish in aquaculture. Ann Microbiol. 2008; 58(3): 527. [DOI:10.1007/BF03175553]
15. Thillairajasekar K, Duraipandiyan V, Perumal P, Ignacimuthu S. Antimicrobial activity of Trichodesmium erythraeum (Ehr)(microalga) from south East coast of Tamil Nadu, India. Int J Integr Biol. 2009; 5(3): 167-70.
16. Kumar K, Mella-Herrera RA, Golden JW. Cyanobacterial heterocysts. Cold Spring Harbor perspectives in biology. 2010; 2(4): a000315. [DOI:10.1101/cshperspect.a000315] [PMID] [PMCID]
17. Kaushik P, Chauhan A. In vitro antibacterial activity of laboratory grown culture of Spirulina platensis.
18. Indian J Microbiol. 2008; 48(3): 348-52. [DOI:10.1007/s12088-008-0043-0] [PMID] [PMCID]
19. Nowruzi B, Khavari-Nejad RA, Sivonen K, Kazemi B, Najafi F, Nejadsattari T. Identification and toxigenic potential of a cyanobacterial strain (Stigomena sp.). Progress in Biological Sciences. 2013; 3(1): 79-85.
20. Nowruzi B, Haghighat S, Fahimi H, Mohammadi E. Nostoc cyanobacteria species: A new and rich source of novel bioactive compounds with pharmaceutical potential. J Pharm Health Serv Res. 2018; 9(1): 5-12. [DOI:10.1111/jphs.12202]
21. Asthana RK, Tripathi MK, Srivastava A, Singh AP, Singh SP, Nath G, et al. Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. J Appl Phycol. 2009; 21(1): 81. [DOI:10.1007/s10811-008-9328-2]
22. Abdel‐Raouf N, Ibraheem IB, Abdel‐Tawab S, Naser YA. Antimicrobial and antihyperlipidemic activities of isolated quercetin from Anabaena aequalis 1. J Phycol. 2011; 47(4): 955-62. [DOI:10.1111/j.1529-8817.2011.01020.x] [PMID]
23. Martins RF, Ramos MF, Herfindal L, Sousa JA, Skærven K, Vasconcelos VM. Antimicrobial and cytotoxic assessment of marine cyanobacteria-Synechocystis and Synechococcus. Mar Drugs. 2008; 6(1): 1-11. [DOI:10.3390/md6010001] [PMID] [PMCID]
24. Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C. Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J Bacteriol. 2008; 190(18): 6084-96. [DOI:10.1128/JB.00759-08] [PMID] [PMCID]
25. Singh RK, Upadhyay S, Tiwari SP, Rai AK, Mohapatra TM. Screening of cyanobacterial extracts against bacteria causing nosocomial infections. J Pharm Res. 2010; 3(2096): e8.
26. Sethubathi GV, Prabu VA. Antibacterial activity of cyanobacterial species from adirampattinam coast, southeast coast of palk bay. Current Research Journal of Biological Sciences. 2010; 2(1): 24-6.
27. Abedin RM, Taha HM. Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry. 2008; 3(1): 22-31.
28. Zhao J, Yang N, Zeng R. Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. Extremophiles. 2008; 12(1): 97-105. [DOI:10.1007/s00792-007-0107-9] [PMID]
29. Humisto A, Jokela J, Liu L, Wahlsten M, Wang H, Permi P, et al. The swinholide biosynthesis gene cluster from a terrestrial cyanobacterium, Nostoc sp. strain UHCC 0450. Appl Environ Microbiol. 2018; 84(3): e02321-17. [DOI:10.1128/AEM.02321-17] [PMID] [PMCID]
30. Roulet J, Taton A, Golden JW, Arabolaza A, Burkart MD, Gramajo H. Development of a cyanobacterial heterologous polyketide production platform. Metabolic engineering. 2018; 49: 94-104. [DOI:10.1016/j.ymben.2018.07.013] [PMID]
31. Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol. 2015; 23(10): 642-52. [DOI:10.1016/j.tim.2015.07.008] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc