year 18, Issue 6 (November - December 2024)                   Iran J Med Microbiol 2024, 18(6): 388-397 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Djalil A D, Taher A A, Utami P I, Zamzani I. Application of Erythrosine B in Antimicrobial Photodynamic Inactivation of Shigella dysenteriae in Orange Juice. Iran J Med Microbiol 2024; 18 (6) :388-397
URL: http://ijmm.ir/article-1-2519-en.html
1- Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia , asmiyenti@gmail.com
2- Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Muhammadiyah Purwokerto, Purwokerto, Indonesia
3- Department of Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Banjarmasin, Banjarmasin, Indonesia
Abstract:   (603 Views)

Background & Objective: Outbreaks of several diseases spread by fruit juice have been widely reported. Sterilization and pasteurization methods destroy the content of bioactive substances in fruit juice. Therefore, fruit juices must be sterilized using different techniques. This study aimed to investigate the application of photodynamic inactivation (PDI) using erythrosine B to inactivate the pathogen Shigella dysenteriae in orange juice.
Methods The orange juice sample was inoculated with Shigella dysenteriae. Light-emitting diode (LED) and polychromatic green light sources were used to irradiate photosensitizer erythrosine B. Cell viability was determined using colony counter method. Duration of irradiation was evaluated for 10, 20, and 30 min, respectively.
Results: The results showed that neither LED nor photosensitizer treatment alone was destructive to Shigella dysenteriae. Otherwise, a 30-min treatment with green light and erythrosine B combination reduced Shigella dysenteriae colony survival to 73.49% (vs 36.5% with a polychromatic source).
Conclusion: PDI using erythrosine B can be a potential method for reducing bacterial infection in juice.

Full-Text [PDF 611 kb]   (231 Downloads) |   |   Full-Text (HTML)  (88 Views)  
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2024/11/11 | Accepted: 2025/01/15 | ePublished: 2025/01/29

References
1. Callejón RM, Rodríguez-Naranjo MI, Ubeda C, Hornedo-Ortega R, Garcia-Parrilla MC, Troncoso AM. Reported foodborne outbreaks due to fresh produce in the United States and European :union:: trends and causes. Foodborne Pathog Dis. 2015;12(1):32-8. [DOI:10.1089/fpd.2014.1821] [PMID]
2. Mengistu DA, Baraki N, Gobena Tesema T. Pathogenic Bacterial Species in Locally Prepared Fresh Fruit Juices Sold in Juice Houses of Eastern Ethiopia. Microbiol insights. 2021;14:11786361211060736. [DOI:10.1177/11786361211060736] [PMID] [PMCID]
3. Huang XC, Yuan YH, Guo CF, Gekas V, Yue TL. Alicyclobacillus in the Fruit Juice Industry: Spoilage, Detection, and Prevention/Control. Food Rev Int. 2015;31(2):91-124. [DOI:10.1080/87559129.2014.974266]
4. Ghorbanalinezhad E, Saeedi G, Khanjani D. Survey on Heterotrophic Bacterial Contamination in Bottled Mineral Water by Culture Method. Iran J Med Microbiol. 2015;8(4):59-68.
5. Dewanti-Hariyadi R. Microbiological Quality and Safety of Fruit Juices. Food Rev Int. 2013;1(1):54-7.
6. Krug M, Chapin T, Danyluk M, Goodrich-Schneider R, Schneider K, Harris L, et al. Outbreaks of Foodborne Disease Associated with Fruit and Vegetable Juices, 1922–2019: FSHN12-04/FS188, rev. 6/2020. Edis. 2020;2020(5):FSHN12-04. [DOI:10.32473/edis-fs188-2020]
7. Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O. Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials. Compr Rev Food Sci Food Saf. 2009;8(3):157-80. [DOI:10.1111/j.1541-4337.2009.00076.x] [PMID]
8. Sharma PU. Bacteriological analysis of street vended fruit juices available in Vidarbha. Int J Curr Microbiol Appl Sci. 2013;2(5):178-83. Available from: [https://www.ijcmas.com/Archives-6.php]
9. Castillo A, Villarruel-López A, Navarro-Hidalgo V, Martínez-González NE, Torres-Vitela MR. Salmonella and Shigella in freshly squeezed orange juice, fresh oranges, and wiping cloths collected from public markets and street booths in Guadalajara, Mexico: incidence and comparison of analytical routes. J Food Prot. 2006;69(11):2595-9. [DOI:10.4315/0362-028X-69.11.2595] [PMID]
10. Berihu T, Gebremariam G, Weldu Y, Kahsay A, Asmelash T, Gebreyesus A. Prevalence, antimicrobial susceptibility test and associated factors of Salmonella and Shigella in ready-to-eat fruit juices and salads in Mekelle, northern Ethiopia. BMC Infect Dis. 2024;24(1):191. [DOI:10.1186/s12879-024-09066-w] [PMID] [PMCID]
11. do Prado-Silva L, Gomes ATPC, Mesquita MQ, Neri-Numa IA, Pastore GM, Neves MGPMS, et al. Antimicrobial photodynamic treatment as an alternative approach for Alicyclobacillus acidoterrestris inactivation. Int J Food Microbiol. 2020;333:108803. [DOI:10.1016/j.ijfoodmicro.2020.108803] [PMID]
12. Aneja KR, Dhiman R, Aggarwal NK, Aneja A. Emerging preservation techniques for controlling spoilage and pathogenic microorganisms in fruit juices. Int J Microbiol. 2014;2014:758942. [DOI:10.1155/2014/758942] [PMID] [PMCID]
13. Kim HW, Rhee MS. Combined treatment of β-resorcylic acid and capric acid enhances mild heat pasteurization for inactivating Salmonella Typhimurium in orange juice. Int J Food Microbiol. 2020;324:108613. [DOI:10.1016/j.ijfoodmicro.2020.108613] [PMID]
14. Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res Int. 2011;44(7):1875-87. [DOI:10.1016/j.foodres.2011.02.053]
15. Subasi BG, Alpas H. Effect of high hydrostatic pressure processing and squeezing pressure on some quality properties of pomegranate juice against thermal treatment. High Press Res. 2017;37(1):78-92. [DOI:10.1080/08957959.2016.1263840]
16. Jadhav HB, Annapure US, Deshmukh RR. Non-thermal Technologies for Food Processing. Front Nutr. 2021;8:1-14. [DOI:10.3389/fnut.2021.657090] [PMID] [PMCID]
17. Samani BH, Lorigooini Z, Rostami S, Zareiforoush H, Behruzian M, Behruzian A. The simultaneous effect of electromagnetic and ultrasound treatments on Escherichia coli count in red grape juice. J HerbMed Pharmacol. 2018;7(1):29-36. [DOI:10.15171/jhp.2018.06]
18. Adekunte AO, Tiwari BK, Cullen PJ, Scannell AGM, O'Donnell CP. Effect of sonication on colour, ascorbic acid and yeast inactivation in tomato juice. Food Chem. 2010;122(3):500-7. [DOI:10.1016/j.foodchem.2010.01.026]
19. Tiwari BK, Muthukumarappan K, O'Donnell CP, Cullen PJ. Kinetics of Freshly Squeezed Orange Juice Quality Changes during Ozone Processing. J Agric Food Chem. 2008;56(15):6416-22. [DOI:10.1021/jf800515e] [PMID]
20. Shah NNAK, Sulaiman A, Sidek NSM, Supian NAM. Quality assessment of ozone-treated citrus fruit juices. Int Food Res J. 2019;26(5):1405-15. Available from: [http://www.ifrj.upm.edu.my/volume-26-2019.html]
21. Aghajanzadeh S, Ziaiifar AM, Verkerk R. Effect of thermal and non-thermal treatments on the color of citrus juice: A review. Food Rev Int. 2023;39(6):3555-77. [DOI:10.1080/87559129.2021.2012799]
22. Amos-Tautua BM, Songca SP, Oluwafemi OS. Application of Porphyrins in Antibacterial Photodynamic Therapy. Molecules. 2019;24(13):2456. [DOI:10.3390/molecules24132456] [PMID] [PMCID]
23. Zhu S, Song Y, Pei J, Xue F, Cui X, Xiong X, et al. The application of photodynamic inactivation to microorganisms in food. Food Chem X. 2021;12:100150. [DOI:10.1016/j.fochx.2021.100150] [PMID] [PMCID]
24. Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, et al. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol. 2018;44(5):571-89. [DOI:10.1080/1040841X.2018.1467876] [PMID]
25. Chrubasik-Hausmann S, Hellwig E, Müller M, Al-Ahmad A. Antimicrobial photodynamic treatment with mother juices and their single compounds as photosensitizers. Nutrients. 2021;13(3):1-15. [DOI:10.3390/nu13030710] [PMID] [PMCID]
26. Liu Y, Li Y, Shao C, Wang P, Wang X, Li R. Curcumin-based residue-free and reusable photodynamic inactivation system for liquid foods and its application in freshly squeezed orange juice. Food Chem. 2024;458:140316. [DOI:10.1016/j.foodchem.2024.140316] [PMID]
27. Cho GL, Ha JW. Erythrosine B (Red Dye No. 3): A potential photosensitizer for the photodynamic inactivation of foodborne pathogens in tomato juice. J Food Saf. 2020;40(4):e12813. [DOI:10.1111/jfs.12813]
28. Sheng L, Li X, Wang L. Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective. Trends Food Sci Technol. 2022;124:167-81. [DOI:10.1016/j.tifs.2022.04.001]
29. Akbarizare M. Photodynamic Inactivation Property of Saffron (Crocus sativus) as a Natural Photosensitizer in Combination with Blue Light in Microbial Strains. Iran J Med Microbiol. 2022;16(6):587-93. [DOI:10.30699/ijmm.16.6.587]
30. Ablon G. Phototherapy with light emitting diodes: Treating a broad range of medical and aesthetic conditions in dermatology. J Clin Aesthet Dermatol. 2018;11(2):21-7. [PMID] [PMCID]
31. Lichtenberg D, Pinchuk I. Oxidative stress, the term and the concept. Biochem Biophys Res Commun. 2015;461(3):441-4. [DOI:10.1016/j.bbrc.2015.04.062] [PMID]
32. Wu M, Zhang Z, Liu Z, Zhang J, Zhang Y, Ding Y, et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today. 2021;37:101104. [DOI:10.1016/j.nantod.2021.101104]
33. Lushchak VI, Storey KB. Oxidative stress concept updated: Definitions, classifications, and regulatory pathways implicated. EXCLI J. 2021;20:956-67. [DOI:10.17179/excli2021-3596]
34. Ezraty B, Gennaris A, Barras F, Collet J-F. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 2017;15(7):385-96. [DOI:10.1038/nrmicro.2017.26] [PMID]
35. International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods 5, Microbiological Specifications of Food Pathogens. In: T. A. Roberts, A. C. Baird-Parker and R. B. Tompkin, Eds., International Commission on Microbiological Specifications for Foods. London, U.K.: Blackie Academic and Professional; 1996. pp. 280-98.
36. International Food Information Council (IFIC) and U.S. Food and Drug Administration. Overview of Food Ingredients, Additives & Colors. [Internet]. 2010. (Accessed: Jan 20, 2025). Available from: [https://www.fda.gov/food/food-ingredients-packaging/food-additives-petitions]
37. Thakur BR, Singh RK, Nelson PE. Quality attributes of processed tomato products: A review. Food Rev Int. 1996;12(3):375-401. [DOI:10.1080/87559129609541085]
38. Silva AF, Borges A, Freitas CF, Hioka N, Mikcha JMG, Simões M. Antimicrobial photodynamic inactivation mediated by Rose Bengal and erythrosine is effective in the control of food-related bacteria in planktonic and biofilm states. Molecules. 2018;23(9):2288. [DOI:10.3390/molecules23092288] [PMID] [PMCID]
39. Kim MM, Darafsheh A. Light Sources and Dosimetry Techniques for Photodynamic Therapy. Photochem Photobiol. 2020;96(2):280-94. [DOI:10.1111/php.13219] [PMID]
40. Kim M-J, Tang CH, Bang WS, Yuk H-G. Antibacterial effect of 405±5nm light emitting diode illumination against Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella on the surface of fresh-cut mango and its influence on fruit quality. Int J Food Microbiol. 2017;244:82-9. [DOI:10.1016/j.ijfoodmicro.2016.12.023] [PMID]
41. Gao J, Matthews KR. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control. 2020;109:106959. [DOI:10.1016/j.foodcont.2019.106959]
42. Hyun J-E, Lee S-Y. Antibacterial effect and mechanisms of action of 460-470 nm light-emitting diode against Listeria monocytogenes and Pseudomonas fluorescens on the surface of packaged sliced cheese. Food Microbiol. 2020;86:103314. [DOI:10.1016/j.fm.2019.103314] [PMID]
43. Wu J, Hou W, Cao B, Zuo T, Xue C, Leung AW, et al. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis Photodyn Ther. 2015;12(3):385-92. [DOI:10.1016/j.pdpdt.2015.06.005] [PMID]
44. Min DB, Boff JM. Chemistry and Reaction of Singlet Oxygen in Foods. Compr Rev food Sci food Saf. 2002;1(2):58-72. [DOI:10.1111/j.1541-4337.2002.tb00007.x] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc