year 18, Issue 2 (March - April 2024)                   Iran J Med Microbiol 2024, 18(2): 123-131 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hasan S M, Jalil L H, Shukur R H. Plant Biosynthesis of Zinc Oxide Nanoparticles Using Punica granatum L. Extract and its Inhibitory Effect on Streptococcus Mutans. Iran J Med Microbiol 2024; 18 (2) :123-131
URL: http://ijmm.ir/article-1-2378-en.html
1- Department of Basic Science, College of Dentistry, Mustansiriya University, Baghdad, Iraq , sulaiman.m.hasan@uomustansiriyah.edu.iq
2- College of Dentistry, Al- Farahidi University, Baghdad, Iraq
3- College Engineering, Al- Nahrain University, Baghdad, Iraq
Abstract:   (1044 Views)

Background and Aim: A useful tactic to change membrane permeability, cytoplasmic leakage, and eventual cell death in bacteria is the neutralization of their cell surface potential by nanoscale materials. In this study, pomegranate peel extract was used in an attempt to create biogenic zinc nanoparticles. It is less expensive and uses less hazardous substances than chemical and physical approaches, and is a straightforward substitute for these approaches. Zinc oxide nanoparticles (ZnO NPs) have extensive biological applications. This study was aimed to produce ZnO NPs via a green chemistry approach and analyze their antibacterial capacity.
Materials and Methods: ZnO NPs were synthesized by mixing equal volumes of zinc acetate (0.1 M) and pomegranate peel extract. The resulting mixture was heated to 100°C for 180 min and the color change was observed. After several washings of the resulting mixture, ZnO NPs were obtained. The biosynthesized ZnO NPs were characterized using UV-visible spectra, FT-IR spectroscopy, and X-ray diffraction (XRD) spectra. The morphology of ZnO NPs was examined using TEM.
Results: The study showed ZnO NPs production in an inexpensive and environmentally friendly way. The ZnO NPs showed optimal antibacterial activity against Streptococcus mutans. When the prepared NPs reacted with eugenol, they showed the ability to improve the effectiveness of temporary dental fillings and supplement the oral health outcomes.
Conclusion: The ZnO NPs showed favorable antibacterial activity against S. mutans. Green synthesis of nanomaterials have emerged as a promising alternative due to their properties against the S. mutans responsible for the tooth decay.

Full-Text [PDF 772 kb]   (349 Downloads) |   |   Full-Text (HTML)  (148 Views)  
Type of Study: Original Research Article | Subject: Antimicrobial Substances
Received: 2024/03/13 | Accepted: 2024/05/20 | ePublished: 2024/05/25

References
1. Larsson DG, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257-69. [DOI:10.1038/s41579-021-00649-x] [PMID] [PMCID]
2. Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int. 2012;22(6):693-700. [DOI:10.1016/j.pnsc.2012.11.015]
3. Ramesh M, Anbuvannan M, Viruthagiri GJ. Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim Acta-A: Mol Biomol Spectrosc. 2015;136:864-70. [DOI:10.1016/j.saa.2014.09.105] [PMID]
4. Abdelbaky AS, Abd El-Mageed TA, Babalghith AO, Selim S, Mohamed AM. Green synthesis and characterization of ZnO nanoparticles using Pelargonium odoratissimum (L.) aqueous leaf extract and their antioxidant, antibacterial and anti-inflammatory activities. Antioxidants. 2022;11(8):1444. [DOI:10.3390/antiox11081444] [PMID] [PMCID]
5. Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004;104(1):293-346. [DOI:10.1021/cr030698+] [PMID]
6. Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518(12):3127-50. [DOI:10.1016/j.tsf.2010.01.018]
7. Bhardwaj A, Sharma G, Gupta S. Nanotechnology applications and synthesis of graphene as nanomaterial for nanoelectronics. Nanomater Environ Biotechnol. 2020;2020:251-69. [DOI:10.1007/978-3-030-34544-0_14]
8. Ismail T, Sestili P, Akhtar S. Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. J Ethnopharmacol. 2012;143(2):397-405. [DOI:10.1016/j.jep.2012.07.004] [PMID]
9. Ifeanyichukwu UL, Fayemi OE, Ateba CN. Green synthesis of zinc oxide nanoparticles from pomegranate (Punica granatum) extracts and characterization of their antibacterial activity. Molecules. 2020;25(19):4521. [DOI:10.3390/molecules25194521] [PMID] [PMCID]
10. Shivaramakrishnan B, Gurumurthy B, Balasubramanian A. Potential biomedical applications of metallic nanobiomaterials: a review. Int J Pharm Sci Res. 2017;8(3):985.
11. Luyts K, Napierska D, Nemery B, Hoet PH. How physico-chemical characteristics of nanoparticles cause their toxicity: complex and unresolved interrelations. Environ Sci Process Impacts. 2013;15(1):23-38. [DOI:10.1039/C2EM30237C] [PMID]
12. Rauta PR, Mohanta YK, Nayak D, editors. Nanotechnology in biology and medicine: research advancements & future perspectives. CRC Press: Florida, U.S. 2019. [DOI:10.1201/9780429259333] [PMCID]
13. Alamdari S, Mirzaee O, Jahroodi FN, Tafreshi MJ, Ghamsari MS, Shik SS, et al. Green synthesis of multifunctional ZnO/chitosan nanocomposite film using wild Mentha pulegium extract for packaging applications. Surf Interface. 2022;34:102349. [DOI:10.1016/j.surfin.2022.102349] [PMID] [PMCID]
14. Ni B, Shi Y, Wang X. The sub‐nanometer scale as a new focus in nanoscience. Adv Mater. 2018;30(43):1802031. [DOI:10.1002/adma.201802031] [PMID]
15. Asha AB, Narain R. Nanomaterials properties. In Polymer science and nanotechnology. Elsevier: Edmonton, Canada. 2020. pp. 349-59. [DOI:10.1016/B978-0-12-816806-6.00015-7]
16. Dolai J, Mandal K, Jana NR. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater. 2021;4(7):6471-96. [DOI:10.1021/acsanm.1c00987]
17. Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA. Nanostructured oxides in chemistry: characterization and properties. Chem Rev. 2004;104(9):4063-104. [DOI:10.1021/cr030032f] [PMID]
18. Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79-92. [DOI:10.1007/s00253-016-8012-8] [PMID]
19. Omran BA. Nanobiotechnology: a multidisciplinary field of science. Springer Nature: Berlin, Germany. 2020. pp. 145-84. [DOI:10.1007/978-3-030-46071-6]
20. Madkour LH. Nanoelectronic Materials: Fundamentals and Applications. Springer Nature: Cham, Switzerland; 2019. [DOI:10.1007/978-3-030-21621-4]
21. Salem SS, El-Belely EF, Niedbała G, Alnoman MM, Hassan SE, Eid AM, et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials. 2020;10(10):2082. [DOI:10.3390/nano10102082] [PMID] [PMCID]
22. Templeton AC, Pietron JJ, Murray RW, Mulvaney P. Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J Phys Chem B. 2000;104(3):564-70. [DOI:10.1021/jp991889c]
23. Fouda A, Saied E, Eid AM, Kouadri F, Alemam AM, Hamza MF, et al. Green synthesis of zinc oxide nanoparticles using an aqueous extract of punica granatum for antimicrobial and catalytic activity. J Funct Biomater. 2023;14(4):205. [DOI:10.3390/jfb14040205] [PMID] [PMCID]
24. Hamza MF, Wei Y, Althumayri K, Fouda A, Hamad NA. Synthesis and characterization of functionalized chitosan nanoparticles with pyrimidine derivative for enhancing ion sorption and application for removal of contaminants. Materials. 2022;15(13):4676. [DOI:10.3390/ma15134676] [PMID] [PMCID]
25. Zahra MH, Hamza MF, El-Habibi G, Abdel-Rahman AA, Mira HI, Wei Y, Alotaibi SH, Amer HH, Goda AE, Hamad NA. Synthesis of a novel adsorbent based on chitosan magnetite nanoparticles for the high sorption of Cr (VI) ions: A study of photocatalysis and recovery on tannery effluents. Catalysts. 2022;12(7):678. [DOI:10.3390/catal12070678]
26. Hamza MF, Wei Y, Khalafalla MS, Abed NS, Fouda A, Elwakeel KZ, et al. U (VI) and Th (IV) recovery using silica beads functionalized with urea-or thiourea-based polymers-Application to ore leachate. Sci Total Environ. 2022;821:153184. [DOI:10.1016/j.scitotenv.2022.153184] [PMID]
27. Hamza MF, Lu S, Salih KA, Mira H, Dhmees AS, Fujita T, et al. As (V) sorption from aqueous solutions using quaternized algal/polyethyleneimine composite beads. Sci Total Environ. 2020;719:137396. [DOI:10.1016/j.scitotenv.2020.137396] [PMID]
28. Mohamed AA, Fouda A, Abdel-Rahman MA, Hassan SE, El-Gamal MS, Salem SS, et al. Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal Agric Biotechnol. 2019;19:101103. [DOI:10.1016/j.bcab.2019.101103]
29. Singh K, Singh J, Rawat M. Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl Sci. 2019;1:1-8. [DOI:10.1007/s42452-019-0610-5]
30. Vijayaraghavan K, Ashokkumar T. Plant-mediated biosynthesis of metallic nanoparticles: A review of literature, factors affecting synthesis, characterization techniques and applications. J Environ Chem Eng. 2017;5(5):4866-83. [DOI:10.1016/j.jece.2017.09.026]
31. Gur T, Meydan I, Seckin H, Bekmezci M, Sen F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ Res. 2022;204:111897. [DOI:10.1016/j.envres.2021.111897] [PMID]
32. Rafique M, Sohaib M, Tahir R, Bilal Tahir M, Rizwan M. Plant-mediated green synthesis of zinc oxide nanoparticles using peel extract of citrus reticulate for boosting seed germination of brassica nigra seeds. J Nanosci Nanotechnol. 2021;21(6):3573-9. [DOI:10.1166/jnn.2021.19015] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc