year 14, Issue 1 (January & February 2020)                   Iran J Med Microbiol 2020, 14(1): 70-83 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari S, Etemadifar Z. Isolation and Characterization of Melanin Producing Pseudomonas stutzeri Strain UIS2 in the Presence of l-tyrosine and Survey of Biological Properties of Its Melanin. Iran J Med Microbiol. 2020; 14 (1) :70-83
URL: http://ijmm.ir/article-1-1050-en.html
1- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
2- Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran , z.etemadifar@sci.ui.ac.ir
Abstract:   (2210 Views)
Background: Melanin is a negative charge hydrophobic complex pigment. Melanin is produced naturally in bacteria to protect them against UV, free radicals and environmental stresses. Pigment production in bacteria has more advantages than other biosources due to its rapid growth, higher efficiency and easier extraction. The aim of this study was the isolation, biochemical and molecular identification the melanin pigment producing bacterium in the presence of l-tyrosine and the evaluation of the pigment biological properties.
Methods: The soil sample was collected from the University of Isfahan Park, and cultured in nutrient agar medium containing l-tyrosine. The colony with brown halo was isolated and identified using phenotypic and molecular methods. The bacterial growth and melanin production were evaluated by spectrophotometry at 600 and 400 nm, respectively. The melanin pigment was extracted by increasing the acidity of the broth culture supernatant. The melanin production yield, antioxidant activity and sun protection factor (SPF) of melanin were determined.
Results: Pseudomonas stutzeri strain UIS2 capable to grow in nutrient agar and melanin production, was isolated and registered in NCBI GenBank with accession no. MG519615. The maximum melanin production was obtained 600 mg l-1 by isolated strain. The antioxidant property of melanin in DPPH test was determined as 74.9% and its SPF was 49.05 U/mL.
Conclusion: The melanin pigment from the isolated Pseudomonas showed high SPF and high antioxidant activity against ROS stresses. So, it can be suggested as a suitable candidate for application in cosmetic, pharmaceutical, and environmental decontaminant.
Full-Text [PDF 1020 kb]   (579 Downloads) |   |   Full-Text (HTML)  (551 Views)  
Type of Study: Original | Subject: Industrial Microbiology
Received: 2020/01/28 | Accepted: 2020/02/25 | ePublished: 2020/03/23

References
1. Tarangini K. Studies on pigment production by microorganisms using raw materials of agro-industrial origin: National Institute of Technology Rourkela; 2014.
2. Pombeiro-Sponchiado SR, Sousa GS, Andrade JC, Lisboa HF, Gonçalves R. Production of melanin pigment by fungi and its biotechnological applications. Melanin2017. p. 31. [DOI:10.5772/67375]
3. Kurian N, Bhat SG. Bacterial melanins. Microbial Bioproducts. 2014;1:97-110.
4. Zamanian SN, Etemadifar Z. Radical scavengering of pigments from novel strains of Dietzia schimae and Microbacterium esteraromaticum. Progress in Biological Sciences. 2017;6(2):159-70.
5. Zerrad A, Anissi J, Ghanam J, Sendide K, El Hassouni M. Antioxidant and antimicrobial activities of melanin produced by a Pseudomonas balearica strain. Journal of Biotechnology Letters. 2014;5(1):87-94.
6. Deshmukh KR, Pethe AS. Extraction and analysis of melanin pigment produced by Clostridium tertium isolated from water sample of saline belt in west Vidardha region. International Journal of Science and Research. 2016;5(8):812-4.
7. Gomila M, Pena A, Mulet M, Lalucat J, Garcia-Valdes E. Phylogenomics and systematics in Pseudomonas. Frontiers in Microbiology. 2015;6:214. [DOI:10.3389/fmicb.2015.00214] [PMID] [PMCID]
8. Le Na NT, Hoa PT, Thang ND. Natural melanin as a potential biomaterial for elimination of heavy metals and bacteria from aqueous solution. VNU Journal of Science: Natural Sciences and Technology. 2016;32(1).
9. Huang S, Pan Y, Gan D, Ouyang X, Tang S, Ekunwe SI, et al. Antioxidant activities and UV-protective properties of melanin from the berry of Cinnamomum burmannii and Osmanthus fragrans. Medicinal Chemistry Research. 2011;20(4):475-81. [DOI:10.1007/s00044-010-9341-2]
10. Mason HS. The chemistry of melanin III. Mechanism of the oxidation of dihydroxyphenylalanine by tyrosinase. Journal of Biological Chemistry. 1948;172(1):83-99.
11. Sun S, Zhang X, Sun S, Zhang L, Shan S, Zhu H. Production of natural melanin by Auricularia auricula and study on its molecular structure. Food Chemistry. 2016;190:801-7. [DOI:10.1016/j.foodchem.2015.06.042] [PMID]
12. Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cellular Microbiology. 2003;5(4):203-23. [DOI:10.1046/j.1462-5814.2003.00268.x] [PMID]
13. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K. Actinobacterial melanins: current status and perspective for the future. World Journal of Microbiology and Biotechnology. 2013;29(10):1737-50. [DOI:10.1007/s11274-013-1352-y] [PMID]
14. Keith KE, Killip L, He P, Moran G, Valvano M. Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. Journal of Bacteriology. 2007;189(24):9057-65. [DOI:10.1128/JB.00436-07] [PMID] [PMCID]
15. Zughaier SM, Ryley HC, Jackson SK. A melanin pigment purified from an epidemic strain of Burkholderia cepacia attenuates monocyte respiratory burst activity by scavenging superoxide anion. Infection and Immunity. 1999;67(2):908-13. [DOI:10.1128/IAI.67.2.908-913.1999] [PMID] [PMCID]
16. Ogunnariwo J, Hamilton-Miller J. Brown-and red-pigmented Pseudomonas aeruginosa: differentiation between melanin and pyorubrin. Journal of Medical Microbiology. 1975;8(1):199-203. [DOI:10.1099/00222615-8-1-199] [PMID]
17. Tarangini K, Mishra S. Production, characterization and analysis of melanin from isolated marine Pseudomonas sp. using vegetable waste. Research Journal of Engineering Sciences. 2013;2(5):40-6.
18. Arulselvi I, Sasidharan P, Raja R, Karthik C, Gurumayum RS. Isolation and characterization of yellow pigment producing Exiguobacterium sps. Journal of Biochemical Technology. 2013;4(4):632-5.
19. Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I. Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from Northeastern Poland. PLoS One. 2015;10(4):e0125428. [DOI:10.1371/journal.pone.0125428] [PMID] [PMCID]
20. Ganesh Kumar C, Sahu N, Narender Reddy G, Prasad RB, Nagesh N, Kamal A. Production of melanin pigment from Pseudomonas stutzeri isolated from red seaweed Hypnea musciformis. Letters in Applied Microbiology. 2013;57(4):295-302. [DOI:10.1111/lam.12111] [PMID]
21. Gholami M, Etemadifar Z. Isolation and characterization of a novel strain of genus Dietzia capable of multiple-extreme resistance. Microbiology. 2015;84(3):389-97. [DOI:10.1134/S0026261715030054]
22. Kumar CG, Mongolla P, Pombala S, Kamle A, Joseph J. Physicochemical characterization and antioxidant activity of melanin from a novel strain of Aspergillus bridgeri ICTF-201. Letters in Applied Microbiology. 2011;53(3):350-8. [DOI:10.1111/j.1472-765X.2011.03116.x] [PMID]
23. Peix A, Berge O, Rivas R, Abril A, Velazquez E. Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina. International Journal of Systematic and Evolutionary Microbiology. 2005;55(3):1107-12. [DOI:10.1099/ijs.0.63445-0] [PMID]
24. Kaplan C. High SPF sunscreen formulations. Google Patents; 2000.
25. Kim SJ, Park SY, Lee J, Chang M, Chung Y, Lee T-K. Biochemical compositions and biological activities of extracts from 3 species of Korean pine needles. Journal of Food and Nutrition Research. 2017;5(1):31-6.
26. Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Review. 2006;70(2):510-47. [DOI:10.1128/MMBR.00047-05] [PMID] [PMCID]
27. Kurian N, Nair H, Bhat S. Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise 305). International Journal of Current Biotechnology. 2014;2(5):6-11.
28. Cordero RJ, Vij R, Casadevall A. Microbial melanins for radioprotection and bioremediation. Microbial Biotechnology. 2017;10(5):1186-90. [DOI:10.1111/1751-7915.12807] [PMID] [PMCID]
29. Hoa PT, Thuy LB, Thang ND. Natural melanin as a potential biomaterial for elimination of heavy metals and bacteria from aqueous solution. VNU Journal of Science: Natural Sciences and Technology. 2017;32(1S).
30. Dastager S, Li W-J, Dayanand A, Tang S-K, Tian X-P, Zhi X, et al. Seperation, identification and analysis of pigment (melanin) production in Streptomyces. African Journal of Biotechnology. 2006;5(8):1131-4.
31. Kwon SW, Kim JS, Park IC, Yoon SH, Park DH, Lim CK, et al. Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. International Journal of Systematic and Evolutionary Microbiology. 2003;53(1):21-7. [DOI:10.1099/ijs.0.02326-0] [PMID]
32. Tarangini K, Mishra S. Production of melanin by soil microbial isolate on fruit waste extract: two step optimization of key parameters. Biotechnology Reports. 2014;4:139-46. [DOI:10.1016/j.btre.2014.10.001] [PMID] [PMCID]
33. Manivasagan P, Venkatesan J, Sivakumar K, Kim SK. Actinobacterial melanins: current status and perspective for the future. World J Microbiol Biotechnol. 2013;29(10):1737-50. [DOI:10.1007/s11274-013-1352-y] [PMID]
34. Sansinenea E, Ortiz A. Melanin: A solution for photoprotection of Bacillus thuringiensis based biopesticides. Biochemistry & Pharmacology. 2014;3(3):e161. [DOI:10.1007/s10529-014-1726-8] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc