year 14, Issue 6 (November & December 2020)                   Iran J Med Microbiol 2020, 14(6): 612-617 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

AL-Janabi A A H, AL-Janabi A. Investigation of the presence of brlA, abaA, and wetA conidiation genes in Dermatophytes. Iran J Med Microbiol. 2020; 14 (6) :612-617
URL: http://ijmm.ir/article-1-996-en.html
1- Department of Microbiology, College of Medicine, University of Karbala, Karbala, Iraq
2- Department of Microbiology, College of Medicine, University of Karbala, Karbala, Iraq , aljanabibio@gmail.com
Abstract:   (444 Views)
Background:  Dermatophytes are common causes of cutaneous infections in humans and animals, which mostly reproduce by an asexual process. Such types of reproduction in many filamentous fungi are usually regulated by brlA, abaA, and wetA genes. The presence of these genes in dermatophytes was investigated.
 Materials & Methods:   Conidiation genes represented by brlA, abaA, and wetA were determined in seven strains of dermatophytes using a polymerase chain reaction (PCR) method.
Results:   All strains of Microsporum canis and one strain of Microsporum ferrugineum (MH383043) were shown to have all three specific conidiation genes, which were absent in other strains, except for Trichophyton interdigitale which had only the abaA gene.
Conclusion:   Dermatophytes content of brlA, abaA, and wetA genes is variable and strain-dependent. The conidiation process in most dermatophytes is assumed to be under the control of other genes not included in this study.
Full-Text [PDF 343 kb]   (107 Downloads)    
Type of Study: Original | Subject: Medical Mycology
Received: 2019/11/19 | Accepted: 2020/09/20 | ePublished: 2020/10/27

References
1. Vander Straten MR, Hossain MA, Ghannoum MA. Cutaneous infections dermatophytosis, onychomycosis, and tinea versicolor. Infect Dis Clin North Am. 2003;17(1):87-112. [DOI:10.1016/S0891-5520(02)00065-X]
2. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8(2):240-59. [DOI:10.1128/CMR.8.2.240] [PMID] [PMCID]
3. Metin B, Heitman J. Sexual Reproduction in Dermatophytes. Mycopathologia. 2017;182(1-2):45-55. [DOI:10.1007/s11046-016-0072-x] [PMID] [PMCID]
4. Boylan MT, Mirabito PM, Willett CE, Zimmerman CR, Timberlake WE. Isolation and physical characterization of three essential conidiation genes from Aspergillus nidulans. Mol Cell Biol. 1987;7(9):3113-8. [DOI:10.1128/MCB.7.9.3113] [PMID] [PMCID]
5. Adams TH, Wieser JK, Yu J-H. Asexual Sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev. 1998;62(1):35-54. [DOI:10.1128/MMBR.62.1.35-54.1998] [PMID] [PMCID]
6. Martinez DA, Oliver BG, Graser Y, Goldberg JM, Li W, Martinez-Rossi NM, et al. Comparative genome analysis of Trichophyton rubrum and related dermatophytes reveals candidate genes involved in infection. mBio. 2012;3(5):e00259-12. [DOI:10.1128/mBio.00259-12] [PMID] [PMCID]
7. Xu X, Liu T, Leng W, Dong J, Xue Y, Yang H, et al. Global gene expression profiles for the growth phases of Trichophyton rubrum. Sci China Life Sci. 2011;54(7):675-82. [DOI:10.1007/s11427-011-4187-5] [PMID]
8. Adams TH, Boylan MT, Timberlake WE. brlA is necessary and sufficient to direct conidiophore development in aspergillus nidulans. Cell. 1988;54(3):353-62. [DOI:10.1016/0092-8674(88)90198-5]
9. Park HS, Yu JH. Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol. 2012;15(6):669-77. [DOI:10.1016/j.mib.2012.09.006] [PMID]
10. Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP. Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology (Reading). 2005;151(Pt 6):1809-21. [DOI:10.1099/mic.0.27880-0] [PMID]
11. Drira I, Hadrich I, Neji S, Mahfouth N, Trabelsi H, Sellami H, et al. Highly discriminatory variable-number tandem-repeat markers for genotyping of Trichophyton interdigitale strains. J Clin Microbiol. 2014;52(9):3290-6. [DOI:10.1128/JCM.00828-14] [PMID] [PMCID]
12. Tao L, Yu JH. AbaA and WetA govern distinct stages of Aspergillus fumigatus development. Microbiology (Reading). 2011;157(Pt 2):313-26. [DOI:10.1099/mic.0.044271-0] [PMID]
13. Borneman AR, Hynes MJ, Andrianopoulos A. The abaA homologue of Penicillium marneffei participates in two developmental programmes: conidiation and dimorphic growth. Mol Microbiol. 2000;38(5):1034-47. [DOI:10.1046/j.1365-2958.2000.02202.x] [PMID]
14. Son H, Kim MG, Min K, Seo YS, Lim JY, Choi GJ, et al. AbaA regulates conidiogenesis in the ascomycete fungus Fusarium graminearum. PLoS One. 2013;8(9):e72915. [DOI:10.1371/journal.pone.0072915] [PMID] [PMCID]
15. Prade RA, Timberlake WE. The Aspergillus nidulans brlA regulatory locus consists of overlapping transcription units that are individually required for conidiophore development. The EMBO Journal. 1993;12(6):2439-47. [DOI:10.1002/j.1460-2075.1993.tb05898.x]
16. de Hoog GS, Guarro J, Gené J, Figueras M. Atlas of clinical fungi: Centraalbureau voor Schimmelcultures (CBS); 2000.
17. Yuksel T, Ilkit M. Identification of rare macroconidia-producing dermatophytic fungi by real-time PCR. Med Mycol. 2012;50(4):346-52. [DOI:10.3109/13693786.2011.610036] [PMID]
18. Weitzman I, Rosenthal S. Studies in the differentiation between Microsporum ferrugineum Ota and Trichophyton soudanense Joyeux. Mycopathologia. 1984;84(2-3):95-101. [DOI:10.1007/BF00436519] [PMID]
19. AL-Janabi A. Study of Characteristic Features of Pleomorphic Epidermophyton floccosum. Glob Environ Res. 2009;3(2):132-4.
20. Katz ME, Braunberger K, Yi G, Cooper S, Nonhebel HM, Gondro C. A p53-like transcription factor similar to Ndt80 controls the response to nutrient stress in the filamentous fungus, Aspergillus nidulans. F1000Research. 2013;2 [Article] [DOI:f1000research.2-72.v1] [PubMed]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2021 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc