year 19, Issue 5 (September - October 2025)                   Iran J Med Microbiol 2025, 19(5): 369-376 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabnia A, Ghaemi E A, Kazeminejad E. Laboratory Investigation of Antibacterial and Anti-Biofilm Effects of Curcumin Nanoparticles on Lacticaseibacillus casei and Lactobacillus acidophilus. Iran J Med Microbiol 2025; 19 (5) :369-376
URL: http://ijmm.ir/article-1-2549-en.html
1- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
2- Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
3- Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran , Ezztk.edu@gmail.com
Abstract:   (937 Views)

Background and Aim: Prolonged use of chemical agents to control cariogenic bacteria is frequently associated with adverse side effects. Consequently, increasing attention has been directed toward replacing conventional chemical antimicrobials with herbal alternatives. This study aimed to evaluate the in vitro antibacterial and anti-biofilm activities of curcumin nanoparticles against standard strains of Lacticaseibacillus (L.) casei and Lactobacillus (L.) acidophilus.
Materials and Methods: In this descriptive cross-sectional study, the minimum inhibitory concentration of nano-curcumin was determined and compared with that of chlorhexidine using broth microdilution method. Chlorhexidine mouthwash served as the positive control, whereas physiological saline was used as the negative control. MICs were determined in 96-well microplates according to the Clinical and Laboratory Standards Institute guidelines. Anti-biofilm activity was assessed by a microtiter plate assay employing crystal violet staining. Data were analyzed using SPSS version 22, with statistical significance defined as P<0.05.
Results & Conclusion: Chlorhexidine inhibited biofilm formation at concentrations of 6.25 µg/mL for L. acidophilus and 12.5 µg/mL for L. casei. Notably, nan-ocurcumin reduced biofilm formation significantly in both species (P<0.05) at a sub-MIC concentration of 3.125 µg/mL. Overall, curcumin nanoparticles exhibited distinct antibacterial and anti-biofilm effects against L. casei and L. acidophilus. Given their natural origin, favorable safety profile, and potential to overcome the limitations of synthetic antimicrobials, nan-ocurcumin formulations may represent a promising and biocompatible alternative for the prevention of dental caries.

     
Type of Study: Brief Original Article | Subject: Oral Microbiology
Received: 2025/06/16 | Accepted: 2025/10/28 | ePublished: 2025/11/11

References
1. Nguyen S, Hiorth M. Advanced drug delivery systems for local treatment of the oral cavity. Ther Deliv. 2015;6(5):595-608. [DOI:10.4155/tde.15.5] [PMID]
2. Bernardoni BL, D'Agostino I, La Motta C, Angeli A. An insight into the last 5-year patents on Porphyromonas gingivalis and Streptococcus mutans, the pivotal pathogens in the oral cavity. Expert Opin Ther Pat. 2024;34(6):433-63. [DOI:10.1080/13543776.2024.2349739] [PMID]
3. Philip N, Suneja B, Walsh L. Beyond Streptococcus mutans: clinical implications of the evolving dental caries aetiological paradigms and its associated microbiome. Br Dent J. 2018;224(4):219-25. [DOI:10.1038/sj.bdj.2018.81] [PMID]
4. Yadav K, Prakash S. Dental caries: A microbiological approach. J Clin Infect Dis Pract. 2017;2(1):1-15. [DOI:10.4172/2476-213X.1000118]
5. Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, et al. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother. 2023;164:114966. [DOI:10.1016/j.biopha.2023.114966] [PMID]
6. Reis AC, da Silva Bezerra D, Hart-Chu EN, Stipp RN, de Figueiredo Guedes SF, Neves BG, et al. Quantification and gene expression of Lactobacillus casei group species associated with dentinal lesions in early childhood caries. Saudi Den J. 2021;33(2):69-77. [DOI:10.1016/j.sdentj.2020.01.006] [PMID] [PMCID]
7. Spatafora G, Li Y, He X, Cowan A, Tanner AC. The evolving microbiome of dental caries. Microorganisms. 2024;12(1):121. [DOI:10.3390/microorganisms12010121] [PMID] [PMCID]
8. Yu OY, Lam WY, Wong AW, Duangthip D, Chu CH. Nonrestorative management of dental caries. J Dent. 2021;9(10):121. [DOI:10.3390/dj9100121] [PMID] [PMCID]
9. Brookes ZL, Bescos R, Belfield LA, Ali K, Roberts A. Current uses of chlorhexidine for management of oral disease: a narrative review. J Dent. 2020;103:103497. [DOI:10.1016/j.jdent.2020.103497] [PMID] [PMCID]
10. Duane B, Yap T, Neelakantan P, Anthonappa R, Bescos R, McGrath C, et al. Mouthwashes: alternatives and future directions. Int Dent J. 2023;73:S89-97. [DOI:10.1016/j.identj.2023.08.011] [PMID] [PMCID]
11. Li S, Jiang S, Jia W, Guo T, Wang F, Li J, et al. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem. 2024;432:137231. [DOI:10.1016/j.foodchem.2023.137231] [PMID]
12. Razavi BM, Ghasemzadeh Rahbardar M, Hosseinzadeh H. A review of therapeutic potentials of turmeric (Curcuma longa) and its active constituent, curcumin, on inflammatory disorders, pain, and their related patents. Phytother Res. 2021;35(12):6489-513. [DOI:10.1002/ptr.7224] [PMID]
13. Tabanelli R, Brogi S, Calderone V. Improving curcumin bioavailability: Current strategies and future perspectives. Pharmaceutics. 2021;13(10):1715. [DOI:10.3390/pharmaceutics13101715] [PMID] [PMCID]
14. Zheng B, McClements DJ. Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 2020;25(12):2791. [DOI:10.3390/molecules25122791] [PMID] [PMCID]
15. Jacob S, Kather FS, Morsy MA, Boddu SH, Attimarad M, Shah J, et al. Advances in nanocarrier systems for overcoming formulation challenges of curcumin: current insights. Nanomaterials. 2024;14(8):672. [DOI:10.3390/nano14080672] [PMID] [PMCID]
16. Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, et al. Antimicrobial potential of curcumin: therapeutic potential and challenges to clinical applications. Antibiotics. 2022;11(3):322. [DOI:10.3390/antibiotics11030322] [PMID] [PMCID]
17. Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EG. Antimicrobial activity of curcumin in nanoformulations: a comprehensive review. Int J Mol Sci. 2021;22(13):7130. [DOI:10.3390/ijms22137130] [PMID] [PMCID]
18. Karthikeyan A, Senthil N, Min T. Nanocurcumin: a promising candidate for therapeutic applications. Front Pharmacol. 2020;11:487. [DOI:10.3389/fphar.2020.00487] [PMID] [PMCID]
19. Kakran M, Sahoo NG, Tan IL, Li L. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanoparticle Res. 2012;14(3):757. [DOI:10.1007/s11051-012-0757-0]
20. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 34th Ed., supplement M100 Wayne, PA: CLSI; 2024.
21. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. Apmis. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
22. Rawas-Qalaji M, Jagal J, Sadik S, Said Z, Ahmed IS, Haider M, et al. Assessment of enhancing curcumin's solubility versus uptake on its anti-cancer efficacy. Colloids Surf B Biointerfaces. 2024;242:114090. [DOI:10.1016/j.colsurfb.2024.114090] [PMID]
23. Badr-Eldin SM, Aldawsari HM, Ahmed OA, Kotta S, Abualsunun W, Eshmawi BA, et al. Utilization of zein nano-based system for promoting antibiofilm and anti-virulence activities of curcumin against Pseudomonas aeruginosa. Nanotechnol Rev. 2024;13(1):20230212. [DOI:10.1515/ntrev-2023-0212]
24. Azizi M, Yazdian F, Maghdoudi A, Ghaderi L, Hagirosadat F. Improvement in curcumin application for preventing dental caries by embeding in nanoparticles. J Shahid Sadoughi Univ Med Sci. 2019;27(3):1327-45. [DOI:10.18502/ssu.v27i3.1187]
25. Helalat L, Zarejavid A, Ekrami A, Haghighizadeh MH, Nasab MS. The effect of curcumin on growth and adherence of major microorganisms causing tooth decay. Middle East J Fam Med. 2017;15:214-20. [DOI:10.5742/MEWFM.2017.93128]
26. Vieira TM, Dos Santos IA, Silva TS, Martins CH, Crotti AE. Antimicrobial activity of monoketone curcuminoids against cariogenic bacteria. Chem Biodivers. 2018;15(8):e1800216. [DOI:10.1002/cbdv.201800216] [PMID]
27. Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EG. Antimicrobial activity of curcumin in nanoformulations: a comprehensive review. Int J Mol Sci. 2021;22(13):7130. [DOI:10.3390/ijms22137130] [PMID] [PMCID]
28. Sarma SK, Dutta U, Das BK, Bharali A, Laloo D, Kalita JM, et al. Evaluation of Lakadong turmeric derived curcumin nanogel against resistant biofilms: In-silico, antibacterial and antibiofilm analysis. J Appl Pharmaceutical Sci. 2024;14(9):208-16. [DOI:10.7324/JAPS.2024.170144]
29. Chen Y, Gao Y, Huang Y, Jin Q, Ji J. Inhibiting quorum sensing by active targeted pH-sensitive nanoparticles for enhanced antibiotic therapy of biofilm-associated bacterial infections. ACS nano. 2023;17(11):10019-32. [DOI:10.1021/acsnano.2c12151] [PMID]
30. Sankhwar R, Yadav S, Kumar A, Gupta RK. Application of nano-curcumin as a natural antimicrobial agent against Gram-positive pathogens. J Appl Nat Sci. 2021;13(1):110-26. [DOI:10.31018/jans.v13i1.2482]
31. Bergamini S, Bellei E, Generali L, Tomasi A, Bertoldi C. A proteomic analysis of discolored tooth surfaces after the use of 0.12% Chlorhexidine (CHX) mouthwash and CHX provided with an anti-discoloration system (ADS). Materials. 2021;14(15):4338. [DOI:10.3390/ma14154338] [PMID] [PMCID]
32. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance toward chlorhexidine in oral bacteria-is there cause for concern?. Front Microbiol. 2019;10:587. [DOI:10.3389/fmicb.2019.00587] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc