سال 14، شماره 2 - ( فروردین و اردیهبشت 1399 )                   جلد 14 شماره 2 صفحات 108-124 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsa S, Soleimanpour S, Derakhshan M, Babaei Nik L, Mir R, Izadi N. A Review of Phenotypic and Genotypic Methods for Detection of Drug Resistance in Mycobacterium tuberculosis. Iran J Med Microbiol. 2020; 14 (2) :108-124
URL: http://ijmm.ir/article-1-1022-fa.html
پارسا شادی، سلیمان پور سامان، درخشان محمد، بابایی نیک لیلا، میر رها، ایزدی نفیسه. مروری بر روش های فنوتیپی و ژنوتیپی تشخیص مقاومت‌های دارویی در مایکوباکتریوم توبرکلوزیس. مجله میکروب شناسی پزشکی ایران. 1399; 14 (2) :108-124

URL: http://ijmm.ir/article-1-1022-fa.html


1- گروه میکروب‌شناسی و ویروس‌شناسی، دانشگاه علوم پزشکی مشهد، مشهد، ایران
2- مرکز مقاومت‌های میکروبی، پژوهشکده بوعلی، دانشگاه علوم پزشکی مشهد، مشهد، ایران ، soleimanpours@mums.ac.ir
3- مرکز مقاومت‌های میکروبی، پژوهشکده بوعلی، دانشگاه علوم پزشکی مشهد، مشهد، ایران
4- آزمایشگاه رفرانس سل شمال شرق کشور، دانشگاه علوم پزشکی مشهد، مشهد، ایران
چکیده:   (1243 مشاهده)
بیماری سل یکی از خطرناک‌ترین بیماری‌های عفونی در جهان بوده و سالانه منجر به مرگ نزدیک به دو میلیون نفر، به ویژه در کشورهای در حال توسعه می‌شود. در این میان، سل مقاوم به درمان ]Multidrug resistance tuberculosis (MDR-TB)[ به‌علت مقاومت سویه‌های مایکوباکتریوم توبرکلوزیس به دو داروی موثر خط اول درمان سل یعنی ایزونیازید و ریفامپین است که در سطح جهان رو به افزایش است. سویه‌های MDR-TB عمدتا در نتیجۀ درمان نامناسب و ناکافی بیماران مبتلا به سل پدید آمده‌اند. ظهور و گسترش این سویه‌ها مانعی برای کنترل و مدیریت بیماری سل و همچنین تهدیدی برای هدف سازمان بهداشت جهانی مبنی بر حذف این بیماری تا سال 2050 است. مدیریت صحیح MDR-TB بر شناخت زودهنگام این بیماری متکی است. اخیرا روش‌های تشخیصی فنوتیپی و ژنوتیپی برای شناسایی سریع این سویه‌ها در بیماران مشکوک به سل ایجاد شده است که برخی از آنها از نظر اقتصادی برای استفاده در کشورهای در حال توسعه نیز مناسب هستند. درمان صحیح بیماران مبتلا به سل مقاوم به دارو در نتیجۀ شناسایی و تشخیص سریع سویه‌های مقاوم به درمان و تجویز داروی مناسب است. نظارت منظم بر وضعیت بیماران نسبت به عوارض جانبی داروها و همچنین افزایش کیفیت روش‌های باکتریایی برای شناسایی سویه‌های مقاوم امری ضروری است. بنابراین در این مطالعه، مکانیسم‌های عملکرد و همچنین مزایا و محدودیت‌های ابزارها و روش‌های تشخیص حساسیت دارویی سل به‌منظور شناسایی سریع و دقیق مقاومت‌های دارویی مایکوباکتریوم توبرکلوزیس  بررسی شد.
متن کامل [PDF 921 kb]   (194 دریافت)    
نوع مطالعه: مروری | موضوع مقاله: باکتری شناسی پزشکی
دریافت: 1398/10/5 | پذیرش: 1398/12/15 | انتشار الکترونیک: 1399/1/21

فهرست منابع
1. Seung KJ, Keshavjee S, Rich ML. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harbor perspectives in medicine. 2015;5(9):a017863. [DOI:10.1101/cshperspect.a017863] [PMID] [PMCID]
2. (WHO) WHO. Global tuberculosis report 2019. WHO. 2019.
3. Pfyffer GE, Vincent V. Mycobacterium tuberculosis Complex, Mycobacterium leprae, and Other Slow‐Growing Mycobacteria. Topley & Wilson's Microbiology and Microbial Infections2010. [DOI:10.1002/9780470688618.taw0046]
4. Seung KJ, Keshavjee S, Rich ML. Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis. Cold Spring Harbor perspectives in medicine. 2015;5(9):a017863-a. [DOI:10.1101/cshperspect.a017863] [PMID] [PMCID]
5. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet (London, England). 2010;375(9728):1830-43. [DOI:10.1016/S0140-6736(10)60410-2]
6. Zainuddin ZF, Dale JW. Does Mycobacterium tuberculosis have plasmids? Tubercle. 1990;71(1):43-9. [DOI:10.1016/0041-3879(90)90060-L]
7. Nagai Y, Iwade Y, Hayakawa E, Nakano M, Sakai T, Mitarai S, et al. High resolution melting curve assay for rapid detection of drug-resistant Mycobacterium tuberculosis. Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy. 2013;19(6):1116-25. [DOI:10.1007/s10156-013-0636-3] [PMID]
8. Vilcheze C, Jacobs WR, Jr. The mechanism of isoniazid killing: clarity through the scope of genetics. Annual review of microbiology. 2007;61:35-50. [DOI:10.1146/annurev.micro.61.111606.122346] [PMID]
9. Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. The Lancet Infectious diseases. 2010;10(9):621-9. [DOI:10.1016/S1473-3099(10)70139-0]
10. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992;358(6387):591-3. [DOI:10.1038/358591a0] [PMID]
11. Seifert M, Catanzaro D, Catanzaro A, Rodwell TC. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PloS one. 2015;10(3):e0119628-e. [DOI:10.1371/journal.pone.0119628] [PMID] [PMCID]
12. Ando H, Kondo Y, Suetake T, Toyota E, Kato S, Mori T, et al. Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2010;54(5):1793-9. [DOI:10.1128/AAC.01691-09] [PMID] [PMCID]
13. Hazbon MH, Brimacombe M, Bobadilla del Valle M, Cavatore M, Guerrero MI, Varma-Basil M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2006;50(8):2640-9. [DOI:10.1128/AAC.00112-06] [PMID] [PMCID]
14. Timmins GS, Deretic V. Mechanisms of action of isoniazid. Molecular microbiology. 2006;62(5):1220-7. [DOI:10.1111/j.1365-2958.2006.05467.x] [PMID]
15. Cardoso RF, Cardoso MA, Leite CQ, Sato DN, Mamizuka EM, Hirata RD, et al. Characterization of ndh gene of isoniazid resistant and susceptible Mycobacterium tuberculosis isolates from Brazil. Memorias do Instituto Oswaldo Cruz. 2007;102(1):59-61. [DOI:10.1590/S0074-02762007000100009] [PMID]
16. Rindi L, Bianchi L, Tortoli E, Lari N, Bonanni D, Garzelli C. Mutations responsible for Mycobacterium tuberculosis isoniazid resistance in Italy. The international journal of tuberculosis and lung disease : the official journal of the International :union: against Tuberculosis and Lung Disease. 2005;9(1):94-7.
17. Snell J, Arora K. Mechanism of action of antimicrobial and antitumor agents: Springer Science & Business Media; 2012.
18. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell. 2001;104(6):901-12. [DOI:10.1016/S0092-8674(01)00286-0]
19. Telenti A, Imboden P, Marchesi F, Matter L, Schopfer K, Bodmer T, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. The Lancet. 1993;341(8846):647-51. [DOI:10.1016/0140-6736(93)90417-F]
20. Brandis G, Wrande M, Liljas L, Hughes D. Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Molecular microbiology. 2012;85(1):142-51. [DOI:10.1111/j.1365-2958.2012.08099.x] [PMID]
21. Laurenzo D, Mousa SA. Mechanisms of drug resistance in Mycobacterium tuberculosis and current status of rapid molecular diagnostic testing. Acta tropica. 2011;119(1):5-10. [DOI:10.1016/j.actatropica.2011.04.008] [PMID]
22. Ohno H, Koga H, Kuroita T, Tomono K, Ogawa K, Yanagihara K, et al. Rapid prediction of rifampin susceptibility of Mycobacterium tuberculosis. American journal of respiratory and critical care medicine. 1997;155(6):2057-63. [DOI:10.1164/ajrccm.155.6.9196115] [PMID]
23. Johnson R, Streicher EM, Louw GE, Warren RM, van Helden PD, Victor TC. Drug resistance in Mycobacterium tuberculosis. Current issues in molecular biology. 2006;8(2):97-111.
24. Chaves F, Alonso-Sanz M, Rebollo M, Tercero J, Jimenez M, Noriega A. rpoB mutations as an epidemiologic marker in rifampin-resistant Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Disease. 2000;4(8):765-70.
25. CNTC. Drug-resistant tuberculosis: a survival guide for clinicians. 2nd edition. 2008. p. 1-266.
26. Beckers B, Lang H, Schimke D, Lammers A. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria. European journal of clinical microbiology. 1985;4(6):556-61. [DOI:10.1007/BF02013394] [PMID]
27. Amini S, Hoffner S, Allahyar Torkaman MR, Hamzehloo G, Nasiri MJ, Salehi M, Sami Kashkooli G, Shahraki MS, Mohsenpoor M, Soleimanpour S, Mir R. Direct drug susceptibility testing of Mycobacterium tuberculosis using the proportional method: A multicenter study. J Glob Antimicrob Resist. 2019;17:242-244. [DOI:10.1016/j.jgar.2018.12.022] [PMID]
28. Gupta A, Anupurba S. Direct drug susceptibility testing of Mycobacterium tuberculosis against primary anti-TB drugs in northern India. Journal of infection in developing countries. 2010;4:695-703. [DOI:10.3855/jidc.1079] [PMID]
29. Canetti G, Froman S, Grosset Ja, Hauduroy P, Langerova M, Mahler H, et al. Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bulletin of the World Health Organization. 1963;29(5):565.
30. Rusch-Gerdes S, Domehl C, Nardi G, Gismondo MR, Welscher HM, Pfyffer GE. Multicenter evaluation of the mycobacteria growth indicator tube for testing susceptibility of Mycobacterium tuberculosis to first-line drugs. J Clin Microbiol. 1999;37(1):45-8. [DOI:10.1128/JCM.37.1.45-48.1999] [PMID] [PMCID]
31. Roberts G, Goodman N, Heifets L, Larsh H, Lindner T, McClatchy J, et al. Evaluation of the BACTEC radiometric method for recovery of mycobacteria and drug susceptibility testing of Mycobacterium tuberculosis from acid-fast smear-positive specimens. Journal of clinical microbiology. 1983;18(3):689-96. [DOI:10.1128/JCM.18.3.689-696.1983] [PMID] [PMCID]
32. Anargyros P, Astill DS, Lim IS. Comparison of improved BACTEC and Lowenstein-Jensen media for culture of mycobacteria from clinical specimens. Journal of clinical microbiology. 1990;28(6):1288-91. [DOI:10.1128/JCM.28.6.1288-1291.1990] [PMID] [PMCID]
33. Ahmad S, Mokaddas E. Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respiratory medicine. 2009;103(12):1777-90. [DOI:10.1016/j.rmed.2009.07.010] [PMID]
34. Tortoli E, Cichero P, Piersimoni C, Simonetti MT, Gesu G, Nista D. Use of BACTEC MGIT 960 for recovery of mycobacteria from clinical specimens: multicenter study. Journal of clinical microbiology. 1999;37(11):3578-82. [DOI:10.1128/JCM.37.11.3578-3582.1999] [PMID] [PMCID]
35. Gravet A, Souillard N, Habermacher J, Moser A, Lohmann C, Schmitt F, et al. Culture and susceptibility testing of mycobacteria with VersaTREK. Pathologie-biologie. 2011;59:32-8. [DOI:10.1016/j.patbio.2010.08.003] [PMID]
36. Gravet A, Souillard N, Habermacher J, Moser A, Lohmann C, Schmitt F, et al. [Culture and susceptibility testing of mycobacteria with VersaTREK]. Pathol Biol (Paris). 2011;59(1):32-8. [DOI:10.1016/j.patbio.2010.08.003] [PMID]
37. Wilson SM, Al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nature medicine. 1997;3(4):465-8. [DOI:10.1038/nm0497-465] [PMID]
38. Banaiee N, Bobadilla-Del-Valle M, Bardarov S, Jr., Riska PF, Small PM, Ponce-De-Leon A, et al. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J Clin Microbiol. 2001;39(11):3883-8. [DOI:10.1128/JCM.39.11.3883-3888.2001] [PMID] [PMCID]
39. Kalokhe AS, Lee JC, Ray SM, Anderson AM, Nguyen MLT, Wang YF, et al. Multidrug-resistant tuberculosis drug susceptibility and molecular diagnostic testing. The American journal of the medical sciences. 2013;345(2):143-8. [DOI:10.1097/MAJ.0b013e31825d32c6] [PMID] [PMCID]
40. Boum Y, 2nd, Orikiriza P, Rojas-Ponce G, Riera-Montes M, Atwine D, Nansumba M, et al. Use of colorimetric culture methods for detection of Mycobacterium tuberculosis complex isolates from sputum samples in resource-limited settings. Journal of clinical microbiology. 2013;51(7):2273-9. [DOI:10.1128/JCM.00749-13] [PMID] [PMCID]
41. Raut U, Narang P, Mendiratta DK, Narang R, Deotale V. Evaluation of rapid MTT tube method for detection of drug susceptibility of Mycobacterium tuberculosis to rifampicin and isoniazid. Indian journal of medical microbiology. 2008;26(3):222-7. [DOI:10.4103/0255-0857.39586] [PMID]
42. Kohli A, Bashir G, Fatima A, Jan A, Wani N-u-d, Ahmad J. Rapid drug-susceptibility testing of Mycobacterium tuberculosis clinical isolates to first-line antitubercular drugs by nitrate reductase assay: A comparison with proportion method. International Journal of Mycobacteriology. 2016;5(4):469-74. [DOI:10.1016/j.ijmyco.2016.06.006] [PMID]
43. Angeby KA, Klintz L, Hoffner SE. Rapid and inexpensive drug susceptibility testing of Mycobacterium tuberculosis with a nitrate reductase assay. J Clin Microbiol. 2002;40(2):553-5. [DOI:10.1128/JCM.40.2.553-555.2002] [PMID] [PMCID]
44. Montoro E, Lemus D, Echemendia M, Martin A, Portaels F, Palomino JC. Comparative evaluation of the nitrate reduction assay, the MTT test, and the resazurin microtitre assay for drug susceptibility testing of clinical isolates of Mycobacterium tuberculosis. The Journal of antimicrobial chemotherapy. 2005;55(4):500-5. [DOI:10.1093/jac/dki023] [PMID]
45. Martin A, Montoro E, Lemus D, Simboli N, Morcillo N, Velasco M, et al. Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis. Journal of microbiological methods. 2005;63(2):145-50. [DOI:10.1016/j.mimet.2005.03.004] [PMID]
46. Newton CR, Graham A, Heptinstall LE, Powell SJ, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic acids research. 1989;17(7):2503-16. [DOI:10.1093/nar/17.7.2503] [PMID] [PMCID]
47. Ugozzoli L, Wallace RB. Allele-specific polymerase chain reaction. Methods.1991;2(1):42-8. [DOI:10.1016/S1046-2023(05)80124-0]
48. Little S. Amplification-refractory mutation system (ARMS) analysis of point mutations. Current protocols in human genetics. 2001;Chapter 9:Unit 9.8.
49. Sisay T, Berhane N, Verma D. Molecular Biology Drug Resistance Mechanisms and Molecular Diagnosis Methods for Tuberculosis. Molecular Biology: Open Access. 2019;8:230.
50. Ho PL, Yam WC, Leung CC, Yew WW, Mok TY, Chan KS, et al. Molecular tests for rapid detection of rifampicin and isoniazid resistance in Mycobacterium tuberculosis. Hong Kong medical journal = Xianggang yi xue za zhi. 2015;21 Suppl 4:4-7.
51. Xu H-B, Jiang R-H, Sha W, Li L, Xiao H-P. PCR-Single-Strand Conformational Polymorphism Method for Rapid Detection of Rifampin-Resistant Mycobacterium tuberculosis: Systematic Review and Meta-Analysis. Journal of Clinical Microbiology. 2010;48(10):3635-40. [DOI:10.1128/JCM.00960-10] [PMID] [PMCID]
52. Kim BJ, Kim SY, Park BH, Lyu MA, Park IK, Bai GH, et al. Mutations in the rpoB gene of Mycobacterium tuberculosis that interfere with PCR-single-strand conformation polymorphism analysis for rifampin susceptibility testing. Journal of clinical microbiology. 1997;35(2):492-4. [DOI:10.1128/JCM.35.2.492-494.1997] [PMID] [PMCID]
53. Shima K, Wu Y, Sugimoto N, Asakura M, Nishimura K, Yamasaki S. Comparison of a PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) Assay to Pulsed-Field Gel Electrophoresis To Determine the Effect of Repeated Subculture and Prolonged Storage on RFLP Patterns of Shiga Toxin-Producing Escherichia coli O157:H7. Journal of Clinical Microbiology. 2006;44(11):3963-8. [DOI:10.1128/JCM.00717-06] [PMID] [PMCID]
54. Victor TC, van Helden PD, Warren R. Prediction of drug resistance in M. tuberculosis: molecular mechanisms, tools, and applications. IUBMB life. 2002;53(4-5):231-7. [DOI:10.1080/15216540212642] [PMID]
55. Ahmad S, Mokaddas E, Jaber AA. Rapid detection of ethambutol-resistant Mycobacterium tuberculosis strains by PCR-RFLP targeting embB codons 306 and 497 and iniA codon 501 mutations. Molecular and cellular probes. 2004;18(5):299-306. [DOI:10.1016/j.mcp.2004.04.001] [PMID]
56. Shamputa IC, Rigouts, Portaels F. Molecular genetic methods for diagnosis and antibiotic resistance detection of mycobacteria from clinical specimens. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2004;112(11-12):728-52. [DOI:10.1111/j.1600-0463.2004.apm11211-1203.x] [PMID]
57. Ruiz M, Torres MJ, Llanos AC, Arroyo A, Palomares JC, Aznar J. Direct detection of rifampin- and isoniazid-resistant Mycobacterium tuberculosis in auramine-rhodamine-positive sputum specimens by real-time PCR. Journal of clinical microbiology. 2004;42(4):1585-9. [DOI:10.1128/JCM.42.4.1585-1589.2004] [PMID] [PMCID]
58. Riahi F, Derakhshan M, Mosavat A, Soleimanpour S, Rezaee SA. Evaluation of Point Mutation Detection in Mycobacterium tuberculosis with Isoniazid Resistance Using Real-Time PCR and TaqMan Probe Assay. Applied Biochemistry and Biotechnology. 2015; 175 (5): 2447-2455. [DOI:10.1007/s12010-014-1442-9] [PMID]
59. Watanabe Pinhata JM, Cergole-Novella MC, Moreira dos Santos Carmo A, Ruivo Ferro e Silva R, Ferrazoli L, Tavares Sacchi C, et al. Rapid detection of Mycobacterium tuberculosis complex by real-time PCR in sputum samples and its use in the routine diagnosis in a reference laboratory. Journal of medical microbiology. 2015;64(9):1040-5. [DOI:10.1099/jmm.0.000121] [PMID]
60. Parashar D, Chauhan DS, Sharma VD, Katoch VM. Applications of real-time PCR technology to mycobacterial research. The Indian journal of medical research. 2006;124(4):385-98.
61. Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical biochemistry. 1997;245(2):154-60. [DOI:10.1006/abio.1996.9916] [PMID]
62. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical chemistry. 2003;49(6 Pt 1):853-60. [DOI:10.1373/49.6.853] [PMID]
63. Landolt P, Stephan R, Scherrer S. Development of a new High Resolution Melting (HRM) assay for identification and differentiation of Mycobacterium tuberculosis complex samples. Scientific Reports. 2019;9(1):1850. [DOI:10.1038/s41598-018-38243-6] [PMID] [PMCID]
64. Alonso M, Navarro Y, Barletta F, Lirola MM, Gotuzzo E, Bouza E, et al. A novel method for the rapid and prospective identification of Beijing Mycobacterium tuberculosis strains by high-resolution melting analysis. Clinical Microbiology and Infection. 2011;17(3):349-57. [DOI:10.1111/j.1469-0691.2010.03234.x] [PMID]
65. Pietzka AT, Indra A, Stöger A, Zeinzinger J, Konrad M, Hasenberger P, et al. Rapid identification of multidrug-resistant Mycobacterium tuberculosis isolates by rpoB gene scanning using high-resolution melting curve PCR analysis. Journal of antimicrobial chemotherapy. 2009;63(6):1121-7. [DOI:10.1093/jac/dkp124] [PMID]
66. Ong DCT, Yam W-C, Siu GKH, Lee ASG. Rapid detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis. Journal of clinical microbiology. 2010;48(4):1047-54. [DOI:10.1128/JCM.02036-09] [PMID] [PMCID]
67. Traore H, van Deun A, Shamputa IC, Rigouts L, Portaels F. Direct detection of Mycobacterium tuberculosis complex DNA and rifampin resistance in clinical specimens from tuberculosis patients by line probe assay. Journal of clinical microbiology. 2006;44(12):4384-8. [DOI:10.1128/JCM.01332-06] [PMID] [PMCID]
68. Hillemann D, Rusch-Gerdes S, Richter E. Evaluation of the GenoType MTBDRplus assay for rifampin and isoniazid susceptibility testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol. 2007;45(8):2635-40. [DOI:10.1128/JCM.00521-07] [PMID] [PMCID]
69. Giannoni F, Iona E, Sementilli F, Brunori L, Pardini M, Migliori GB, et al. Evaluation of a new line probe assay for rapid identification of gyrA mutations in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy. 2005;49(7):2928-33. [DOI:10.1128/AAC.49.7.2928-2933.2005] [PMID] [PMCID]
70. Marttila HJ, Makinen J, Marjamaki M, Soini H. Prospective evaluation of pyrosequencing for the rapid detection of isoniazid and rifampin resistance in clinical Mycobacterium tuberculosis isolates. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology. 2009;28(1):33-8. [DOI:10.1007/s10096-008-0584-5] [PMID]
71. Jureen P, Engstrand L, Eriksson S, Alderborn A, Krabbe M, Hoffner SE. Rapid detection of rifampin resistance in Mycobacterium tuberculosis by Pyrosequencing technology. J Clin Microbiol. 2006;44(6):1925-9. [DOI:10.1128/JCM.02210-05] [PMID] [PMCID]
72. Zhao JR, Bai YJ, Wang Y, Zhang QH, Luo M, Yan XJ. Development of a pyrosequencing approach for rapid screening of rifampin, isoniazid and ethambutol-resistant Mycobacterium tuberculosis. The international journal of tuberculosis and lung disease : the official journal of the International :union: against Tuberculosis and Lung Disease. 2005;9(3):328-32.
73. Friedrich SO, von Groote-Bidlingmaier F, Diacon AH. Xpert MTB/RIF Assay for Diagnosis of Pleural Tuberculosis. Journal of Clinical Microbiology. 2011;49(12):4341-2. [DOI:10.1128/JCM.05454-11] [PMID] [PMCID]
74. Ioannidis P, Papaventsis D, Karabela S, Nikolaou S, Panagi M, Raftopoulou E, et al. Cepheid GeneXpert MTB/RIF Assay for Mycobacterium tuberculosis Detection and Rifampin Resistance Identification in Patients with Substantial Clinical Indications of Tuberculosis and Smear-Negative Microscopy Results. Journal of Clinical Microbiology. 2011;49(8):3068-70. [DOI:10.1128/JCM.00718-11] [PMID] [PMCID]
75. Boehme CC, Nicol MP, Nabeta P, Michael JS, Gotuzzo E, Tahirli R, et al. Feasibility, diagnostic accuracy, and effectiveness of decentralised use of the Xpert MTB/RIF test for diagnosis of tuberculosis and multidrug resistance: a multicentre implementation study. Lancet (London, England). 2011;377(9776):1495-505. [DOI:10.1016/S0140-6736(11)60438-8]
76. Noor KM, Shephard L, Bastian I. Molecular diagnostics for tuberculosis. Pathology. 2015;47(3):250-6. [DOI:10.1097/PAT.0000000000000232] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2020 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.