year 15, Issue 6 (November - December 2021)                   Iran J Med Microbiol 2021, 15(6): 676-683 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dalir A, Razavi S, Talebi M, Masjedian Jazi F, Zahedi Bialvaei A, Mirshekar M et al . Antibiotic Susceptibility Pattern and Distribution of Virulence Factors Among Klebsiella pneumoniae Isolated from Healthy Volunteers. Iran J Med Microbiol 2021; 15 (6) :676-683
URL: http://ijmm.ir/article-1-1482-en.html
1- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
2- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran , razavi.sh@iums.ac.ir
3- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (4151 Views)

Background and Objective: The healthy people’s fecal flora in the community represents a large potential reservoir. Therefore, the current study aimed to detect antibiotic resistance patterns and virulence factors in Klebsiella pneumoniae isolated from healthy volunteers’ feces.
Materials and Methods: Three hundred and fifty stool specimens were collected from sales rep healthy individuals referring to the Northwest Tehran Health Centers to get a health card. Bacterial isolation, identification, and antimicrobial susceptibility testing were conducted according to the routine instructions. In addition, polymerase chain reaction (PCR) was used to detect the genetic factors responsible for producing extended-spectrum β-lactamases (ESBLs: SHV, TEM, and CTX-M) blaKPC and other virulence genes.
Results: Among fecal samples analyzed, 60 (17.1%) K. pneumoniae were isolated. The results demonstrated that the highest resistance rate was related to piperacillin-tazobactam (n=25, 41.6%), followed by and meropenem (n=17, 28.8%) and co-trimoxazole (n=11, 18.3%), respectively. Also, all strains were susceptible to amikacin, gentamicin, and imipenem. The PCR results of the virulence gene showed that 95% (n=57) of isolates were positive for fimH gene, 93.33% (n=56) for BssS gene, 27 (45%) for rmpA gene. The PCR results for antibiotic resistance genes showed that 41.66% (n=25) had blaTEM gene, 38.33% (n=23) blaCTX-M gene, 35% (n=21) blaSHV gene and 3.33% (n=2) isolates had blaKPC gene, and none of these isolates carried magA gene.
Conclusion: Antibiotic resistance was common among K. pneumoniae isolated from healthy volunteers’ feces who participated in this study. Transmission of resistant bacteria and plasmids through oral-fecal sources threats to the public, which could complicate treatment options for community-acquired infections caused by K. pneumoniae.

Full-Text [PDF 507 kb]   (955 Downloads) |   |   Full-Text (HTML)  (1075 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2021/09/12 | Accepted: 2021/11/10 | ePublished: 2021/12/8

References
1. Ghanavati R, Darban-Sarokhalil D, Navab-Moghadam F, Kazemian H, Irajian G, Razavi S. First report of coexistence of AmpC beta-lactamase genes in Klebsiella pneumoniae strains isolated from burn patients. Acta Microbiologica et Immunologica Hungarica AMicr. 2017;64(4):455-62. [DOI:10.1556/030.64.2017.028] [PMID] [PMCID]
2. Kuehn BM. "Nightmare" bacteria on the rise in US hospitals, long-term care facilities. JAMA. 2013;309(15):1573-4. [DOI:10.1001/jama.2013.2922] [PMID]
3. Russo TA, Marr CM. Hypervirulent Klebsiella pneumoniae. Clinical microbiology reviews. 2019;32(3). [DOI:10.1128/CMR.00001-19] [PMID] [PMCID]
4. Zhanel GG, DeCorby M, Adam H, Mulvey MR, McCracken M, Lagace-Wiens P, et al. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob Agents Chemother. 2010;54(11):4684-93. [DOI:10.1128/AAC.00469-10] [PMID] [PMCID]
5. Ghanavati R, Kazemian H, Asadollahi P, Heidari H, Irajian G, Navab-Moghadam F, et al. Characterization of antimicrobial resistance patterns of Klebsiella pneumoniae isolates obtained from wound infections. Infect Disord Drug Targets. 2021;21(1):119-24. [DOI:10.2174/1871526520666200129124924] [PMID]
6. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla TEM, bla SHV, bla CTX-M genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microbial drug resistance. 2010;16(1):49-53. [DOI:10.1089/mdr.2009.0096] [PMID]
7. Canton R, Coque TM. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466-75. [DOI:10.1016/j.mib.2006.08.011] [PMID]
8. Leylabadlo HE, Pourlak T, Bialvaei AZ, Aghazadeh M, Asgharzadeh M, Kafil HS. Extended-Spectrum Beta-Lactamase Producing Gram Negative Bacteria in Iran: A Review. Afr J Infect Dis. 2017;11(2):39-53. [DOI:10.21010/ajid.v11i2.6] [PMID] [PMCID]
9. El Fertas-Aissani R, Messai Y, Alouache S, Bakour R. Virulence profiles and antibiotic susceptibility patterns of Klebsiella pneumoniae strains isolated from different clinical specimens. Pathol Biol (Paris). 2013;61(5):209-16. [DOI:10.1016/j.patbio.2012.10.004] [PMID]
10. Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167-81. [DOI:10.1002/cam4.2148] [PMID] [PMCID]
11. Barreto S, Zambrano M, Araque M. Phenotypic variations of susceptibility in Klebsiella pneumoniae strains of nosocomial origin and their association with biofilm formation. Investigacion clinica. 2009;50(2):221-9.
12. Schroll C, Barken KB, Krogfelt KA, Struve C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010;10(1):179. [DOI:10.1186/1471-2180-10-179] [PMID] [PMCID]
13. Bartoloni A, Pallecchi L, Benedetti M, Fernandez C, Vallejos Y, Guzman E, et al. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg Infect Dis. 2006;12(6):907-13. [DOI:10.3201/eid1206.051258] [PMID] [PMCID]
14. Shivaee A, Mirshekar M. Association between ESBLs Genes and Quinolone Resistance in Uropathogenic Escherichia coli Isolated from Patients with Urinary Tract Infection. Infection Epidemiology and Microbiology. 2019;5(1):15-23.
15. Donskey CJ. Antibiotic regimens and intestinal colonization with antibiotic-resistant gram-negative bacilli. Clin Infect Dis. 2006;43 Suppl 2(Supplement_2):S62-9. [DOI:10.1086/504481] [PMID]
16. Reddy P, Malczynski M, Obias A, Reiner S, Jin N, Huang J, et al. Screening for extended-spectrum β-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clinical infectious diseases. 2007;45(7):846-52. [DOI:10.1086/521260] [PMID]
17. Najjuka CF, Kateete DP, Kajumbula HM, Joloba ML, Essack SY. Antimicrobial susceptibility profiles of Escherichia coli and Klebsiella pneumoniae isolated from outpatients in urban and rural districts of Uganda. BMC Res Notes. 2016;9(1):235. [DOI:10.1186/s13104-016-2049-8] [PMID] [PMCID]
18. Najar Peerayeh S, Eslami M, Memaryani M, Siadat SD. High Prevalence of bla CTX-M-1 Group Extended-Spectrum β-lactamase Genes in Escherichia coli Isolates From Tehran. Jundishapur Journal of Microbiology. 2013;6(7):e6863. [DOI:10.5812/jjm.6863]
19. Bialvaei AZ, Pourlak T, Aghamali M, Asgharzadeh M, Gholizadeh P, Kafil HS. The prevalence of CTX-M-15 extended-spectrum β-lactamases among Salmonella spp. and Shigella spp. isolated from three Iranian hospitals. European Journal of Microbiology and Immunology. 2017;7(2):133-7. [DOI:10.1556/1886.2017.00004] [PMID] [PMCID]
20. Nakamura A, Komatsu M, Noguchi N, Ohno Y, Hashimoto E, Matsutani H, et al. Analysis of molecular epidemiologic characteristics of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli colonizing feces in hospital patients and community dwellers in a Japanese city. J Infect Chemother. 2016;22(2):102-7. [DOI:10.1016/j.jiac.2015.11.001] [PMID]
21. Luvsansharav UO, Hirai I, Niki M, Sasaki T, Makimoto K, Komalamisra C, et al. Analysis of risk factors for a high prevalence of extended-spectrum {beta}-lactamase-producing Enterobacteriaceae in asymptomatic individuals in rural Thailand. J Med Microbiol. 2011;60(Pt 5):619-24. [DOI:10.1099/jmm.0.026955-0] [PMID]
22. Li B, Sun JY, Liu QZ, Han LZ, Huang XH, Ni YX. High prevalence of CTX-M beta-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scand J Infect Dis. 2011;43(3):170-4. [DOI:10.3109/00365548.2010.538856] [PMID]
23. Mansury D, Motamedifar M, Sarvari J, Shirazi B, Khaledi A. Antibiotic susceptibility pattern and identification of extended spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae from Shiraz, Iran. Iran J Microbiol. 2016;8(1):55-61.
24. asadpour nn. Frequency of Multidrug Resistant Beta Lactamase Producer Klebsiella Pneumoniae in Urinary Tract Infections in Rasht. Journal of Ilam University of Medical Sciences. 2017;25(2):82-90. [DOI:10.29252/sjimu.25.2.82]
25. Joo EJ, Kim SJ, Baek M, Choi Y, Seo J, Yeom JS, et al. Fecal Carriage of Antimicrobial-Resistant Enterobacteriaceae in Healthy Korean Adults. J Microbiol Biotechnol. 2018;28(7):1178-84. [DOI:10.4014/jmb.1801.12060] [PMID]
26. Lu B, Zhou H, Zhang X, Qu M, Huang Y, Wang Q. Molecular characterization of Klebsiella pneumoniae isolates from stool specimens of outpatients in sentinel hospitals Beijing, China, 2010-2015. Gut Pathog. 2017;9(1):39. [DOI:10.1186/s13099-017-0188-7] [PMID] [PMCID]
27. Candan ED, Aksoz N. Klebsiella pneumoniae: characteristics of carbapenem resistance and virulence factors. Acta Biochim Pol. 2015;62(4):867-74. [DOI:10.18388/abp.2015_1148] [PMID]
28. Rodriguez-Navarro J, Miro E, Brown-Jaque M, Hurtado JC, Moreno A, Muniesa M, et al. Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother. 2020;64(5). [DOI:10.1128/AAC.02064-19] [PMID] [PMCID]
29. Fu L, Huang M, Zhang X, Yang X, Liu Y, Zhang L, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168-72. [DOI:10.1016/j.micpath.2018.01.030] [PMID]
30. Hossieni SE, Amini A, Soltanmoradi H, Ebrahimzadeh Namvar A. Frequency of fimH, magA and rmpA Genes among Klebsiella pneumoniae Isolates in Hospitalized Patients in Babol, Iran. Avicenna J Clin Med. 2018;25(2):121-6. [DOI:10.21859/ajcm.25.2.121]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc