year 18, Issue 6 (November - December 2024)                   Iran J Med Microbiol 2024, 18(6): 352-363 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Anjum H, Mitu S Y, Arefin M S, Mitu M J, Hossain M S, Islam S, et al . Occurrence of Metallo-β-lactamase Variants Among Heterogeneous Population of Carbapenem Resistant Clinical from Savar, Bangladesh. Iran J Med Microbiol 2024; 18 (6) :352-363
URL: http://ijmm.ir/article-1-2462-en.html
1- Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
2- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
3- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
4- Department of Microbiology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh , hasiburku@juniv.edu
Abstract:   (272 Views)
Background and Objectives: Worldwide dissemination of Metallo-β-Lactamases (MBLs) has been reported as a major mechanism of resistance to carbapenems in clinical Gram-negative isolates, including Pseudomonas aeruginosa (P. aeruginosa). The present study aimed to investigate the occurrence of MBL variants in carbapenem resistant P. aeruginosa isolates from Dhaka, Bangladesh.
Methods: Samples from patients (n=238) with urinary tract infections, wound infections, and catheter-associated infections from two academic hospitals of Savar, Dhaka were investigated. Carbapenem susceptibility of the isolates was tested against imipenem and meropenem. MBL-mediated carbapenem resistance was investigated phenotypically and through PCR amplification of four MBL variants. Plasmid extraction was conducted to observe association with MBL carriage. ERIC-PCR was carried out to determine possible epidemiological linkages.
Results: The presence of P. aeruginosa was detected in 22% (53/238) of the collected clinical samples. Resistance to carbapenems was present among 30% (16/53) of these clinical isolates, which is more than 2-fold higher compared to that of previous studies. Phenotypic expression of MBL was detected in 90% (14/16) of resistant isolates. Molecular analysis revealed that 63% (10/16) of the carbapenem-resistant isolates carried at least one of the MBL variants, either bla-VIM or bla-NDM-1. All positive bla-NDM-1 variants carried a 0.5 MDa plasmid. ERIC-PCR revealed highly heterogeneous nature of P. aeruginosa isolates indicating multiple sources of infection within the hospital.
Conclusion: These findings indicate an increased MBL-mediated resistance to carbapenem in P. aeruginosa, which poses a serious threat to the treatment of infections among hospitalized patients.
Full-Text [PDF 772 kb]   (70 Downloads)    
Type of Study: Original Research Article | Subject: Antibiotic Resistance
Received: 2024/08/1 | Accepted: 2024/12/31 | ePublished: 2025/01/29

References
1. Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS. Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest. 2005;128(6):3854-62. [DOI:10.1378/chest.128.6.3854] [PMID]
2. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(1):1-12. [DOI:10.1086/595011] [PMID]
3. Rice LB. Progress and challenges in implementing the research on ESKAPE pathogens. Infect Control Hosp Epidemiol. 2010;31(Suppl 1):S7-10. [DOI:10.1086/655995] [PMID]
4. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens. 2021;10(10):1310. [DOI:10.3390/pathogens10101310] [PMID] [PMCID]
5. Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health. 2009;2(3):101-11. [DOI:10.1016/j.jiph.2009.08.003] [PMID]
6. Ahmed I, Rabbi MB, Sultana S. Antibiotic resistance in Bangladesh: A systematic review. Int J Infect Dis. 2019;80:54-61. [DOI:10.1016/j.ijid.2018.12.017] [PMID]
7. Lodise TP, Bassetti M, Ferrer R, Naas T, Niki Y, Paterson DL, et al. All-cause mortality rates in adults with carbapenem-resistant Gram-negative bacterial infections: a comprehensive review of pathogen-focused, prospective, randomized, interventional clinical studies. Expert Rev Anti Infect Ther. 2022;20(5):707-19. [DOI:10.1080/14787210.2022.2020099] [PMID]
8. Beig M, Taheri M, Arabestani MR. Expression of MexAB-OprM efflux pump and OprD porin in carbapenemase producing Pseudomonas aeruginosa clinical isolates. Gene Reports. 2020;20:100744. [DOI:10.1016/j.genrep.2020.100744]
9. Rostami S, Farajzadeh Sheikh A, Shoja S, Farahani A, Tabatabaiefar MA, Jolodar A, et al. Investigating of four main carbapenem-resistance mechanisms in high-level carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. J Chin Med Assoc. 2018;81(2):127-32. [DOI:10.1016/j.jcma.2017.08.016] [PMID]
10. Deshmukh DG, Damle AS, Bajaj JK, Bhakre JB, Patwardhan NS. Metallo-β-lactamase-producing clinical isolates from patients of a tertiary care hospital. J Lab Physicians. 2011;3(2):93-7. [DOI:10.4103/0974-2727.86841] [PMID] [PMCID]
11. Emeraud C, Escaut L, Boucly A, Fortineau N, Bonnin RA, Naas T, et al. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antimicrob Agents Chemother. 2019;63(5):e00010-19. [DOI:10.1128/AAC.00010-19] [PMID] [PMCID]
12. Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-beta-lactamases: the quiet before the storm?. Clin Microbiol Rev. 2005;18(2):306-25. [DOI:10.1128/CMR.18.2.306-325.2005] [PMID] [PMCID]
13. Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: a last frontier for β-lactams?. Lancet Infect Dis. 2011;11(5):381-93. [DOI:10.1016/S1473-3099(11)70056-1] [PMID]
14. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010;10(9):597-602. [DOI:10.1016/S1473-3099(10)70143-2] [PMID] [PMCID]
15. Bush K. The ABCD's of β-lactamase nomenclature. J Infect Chemother. 2013;19(4):549-59. [DOI:10.1007/s10156-013-0640-7] [PMID]
16. Mojica MF, Bonomo RA, Fast W. B1-Metallo-β-Lactamases: Where Do We Stand?. Curr Drug Targets. 2016;17(9):1029-50. [DOI:10.2174/1389450116666151001105622] [PMID] [PMCID]
17. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007;20(3):440-58. [DOI:10.1128/CMR.00001-07] [PMID] [PMCID]
18. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother. 1999;43(7):1584-90. [DOI:10.1128/AAC.43.7.1584] [PMID] [PMCID]
19. Khan AU, Maryam L, Zarrilli R. Structure, Genetics and Worldwide Spread of New Delhi Metallo-β-lactamase (NDM): a threat to public health. BMC Microbiol. 2017;17(1):101. [DOI:10.1186/s12866-017-1012-8] [PMID] [PMCID]
20. Urmi UL, Nahar S, Rana M, Sultana F, Jahan N, Hossain B, et al. Genotypic to Phenotypic Resistance Discrepancies Identified Involving β-Lactamase Genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in Uropathogenic Klebsiella pneumoniae. Infect Drug Resist. 2020;13:2863-75. [DOI:10.2147/IDR.S262493] [PMID] [PMCID]
21. Gilardi GL. Characterization of Pseudomonas species isolated from clinical specimens. Appl Microbiol. 1971;21(3):414-9. [DOI:10.1128/am.21.3.414-419.1971] [PMID] [PMCID]
22. O'Hara C M. Manual and automated instrumentation for identification of Enterobacteriaceae and other aerobic gram-negative bacilli. Clin Microbiol Rev. 2005;18(1):147-62. [DOI:10.1128/CMR.18.1.147-162.2005] [PMID] [PMCID]
23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. [DOI:10.1128/jb.173.2.697-703.1991] [PMID] [PMCID]
24. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493-6. [DOI:10.1093/ajcp/45.4_ts.493] [PMID]
25. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2021.
26. Gill MM, Usman J, Kaleem F, Hassan A, Khalid A, Anjum R, et al. Frequency and antibiogram of multi-drug resistant Pseudomonas aeruginosa. J Coll Physicians Surg Pak. 2011;21(9):531-4. [PMID]
27. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
28. Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40(10):3798-801. [DOI:10.1128/JCM.40.10.3798-3801.2002] [PMID] [PMCID]
29. Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007;59(2):321-2. [DOI:10.1093/jac/dkl481] [PMID]
30. Rad ZR, Rad ZR, Goudarzi H, Goudarzi M, Alizade H, Hematian A, et al. Detection of New Delhi Metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and Pediatric patients in Iranian hospitals. Gene Reports. 2021;23:101152. [DOI:10.1016/j.genrep.2021.101152]
31. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19(24):6823-31. [DOI:10.1093/nar/19.24.6823] [PMID] [PMCID]
32. Aljindan R, Alsamman K, Elhadi N. ERIC-PCR Genotyping of Acinetobacter baumannii Isolated from Different Clinical Specimens. Saudi J Med Med Sci. 2018;6(1):13-7. [DOI:10.4103/sjmms.sjmms_138_16] [PMID] [PMCID]
33. Ranjbar R, Tabatabaee A, Behzadi P, Kheiri R. Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) Genotyping of Escherichia coli Strains Isolated from Different Animal Stool Specimens. Iran J Pathol. 2017;12(1):25-34. [DOI:10.30699/ijp.2017.21506] [PMID] [PMCID]
34. Kado CI, Liu ST. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981;145(3):1365-73. [DOI:10.1128/jb.145.3.1365-1373.1981] [PMID] [PMCID]
35. Macrina FL, Kopecko DJ, Jones KR, Ayers DJ, McCowen SM. A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid. 1978;1(3):417-20. [DOI:10.1016/0147-619X(78)90056-2] [PMID]
36. Haider K, Huq MI, Talukder KA, Ahmad QS. Electropherotyping of plasmid DNA of different serotypes of Shigella flexneri isolated in Bangladesh. Epidemiol Infect. 1989;102(3):421-8. [DOI:10.1017/S0950268800030132] [PMID] [PMCID]
37. Anjum H, Arefin MS, Jahan N, Oishee MJ, Nahar S, Islam S, et al. Roles of intrinsic and acquired resistance determinants in multidrug-resistant clinical Pseudomonas aeruginosa in Bangladesh. Bangladesh J Med Sci. 2023;22(3):489-507. [DOI:10.3329/bjms.v22i3.66960]
38. Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care. 2015;19(1):219. [DOI:10.1186/s13054-015-0926-5] [PMID] [PMCID]
39. Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS One. 2018;13(2):e0193431. [DOI:10.1371/journal.pone.0193431] [PMID] [PMCID]
40. Wang W, Wang X. Prevalence of metallo-β-lactamase genes among Pseudomonas aeruginosa isolated from various clinical samples in China. J Lab Med. 2020;44(4):197-203. [DOI:10.1515/labmed-2019-0162]
41. Kabic J, Fortunato G, Vaz-Moreira I, Kekic D, Jovicevic M, Pesovic J, et al. Dissemination of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa in Serbian Hospital Settings: Expansion of ST235 and ST654 Clones. Int J Mol Sci. 2023;24(2):1519. [DOI:10.3390/ijms24021519] [PMID] [PMCID]
42. Radhika A, Lakshmi JT, Ariyanachi K, Sakthivadivel V. Detection of Metallo Beta-Lactamase (MBL) producing pseudomonas aeruginosa in a tertiary care hospital, Ghanpur, Medchal, India. Maedica. 2022;17(1):134. [DOI:10.26574/maedica.2022.17.1.134] [PMID] [PMCID]
43. Nakayama R, Inoue-Tsuda M, Matsui H, Ito T, Hanaki H. Classification of the metallo β-lactamase subtype produced by the carbapenem-resistant Pseudomonas aeruginosa isolates in Japan. J Infect Chemother. 2022;28(2):170-5. [DOI:10.1016/j.jiac.2021.04.005] [PMID]
44. Mohanam L, Menon T. Coexistence of metallo-beta-lactamase-encoding genes in Pseudomonas aeruginosa. Indian J Med Res. 2017;146(Supplement):S46-s52. [DOI:10.4103/ijmr.IJMR_29_16] [PMID] [PMCID]
45. Saleem S, Bokhari H. Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan. J Infect Public Health. 2020;13(4):598-605. [DOI:10.1016/j.jiph.2019.08.019] [PMID]
46. Olaniran OB, Adeleke OE, Donia A, Shahid R, Bokhari H. Incidence and Molecular Characterization of Carbapenemase Genes in Association with Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa from Tertiary Healthcare Facilities in Southwest Nigeria. Curr Microbiol. 2021;79(1):27. [DOI:10.1007/s00284-021-02706-3] [PMID]
47. Namaei MH, Yousefi M, Askari P, Roshanravan B, Hashemi A, Rezaei Y. High prevalence of multidrug-resistant non-fermentative Gram-negative bacilli harboring bla (IMP-1) and bla (VIM-1) metallo-beta-lactamase genes in Birjand, south-east Iran. Iran J Microbiol. 2021;13(4):470-9. [DOI:10.18502/ijm.v13i4.6971] [PMID] [PMCID]
48. Botelho J, Grosso F, Quinteira S, Brilhante M, Ramos H, Peixe L. Two decades of blaVIM-2-producing Pseudomonas aeruginosa dissemination: an interplay between mobile genetic elements and successful clones. J Antimicrob Chemother. 2018;73(4):873-82. [DOI:10.1093/jac/dkx517] [PMID]
49. Siarkou VI, Vitti D, Protonotariou E, Ikonomidis A, Sofianou D. Molecular epidemiology of outbreak-related pseudomonas aeruginosa strains carrying the novel variant blaVIM-17 metallo-beta-lactamase gene. Antimicrob Agents Chemother. 2009;53(4):1325-30. [DOI:10.1128/AAC.01230-08] [PMID] [PMCID]
50. Lombardi G, Luzzaro F, Docquier JD, Riccio ML, Perilli M, Colì A, et al. Nosocomial infections caused by multidrug-resistant isolates of pseudomonas putida producing VIM-1 metallo-beta-lactamase. J Clin Microbiol. 2002;40(11):4051-5. [DOI:10.1128/JCM.40.11.4051-4055.2002] [PMID] [PMCID]
51. Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-beta-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891-7. [DOI:10.1128/AAC.44.4.891-897.2000] [PMID] [PMCID]
52. Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother. 2015;47(2):81-97. [DOI:10.3947/ic.2015.47.2.81] [PMID] [PMCID]
53. Findlay J, Raro OH, Poirel L, Nordmann P. Molecular analysis of metallo-beta-lactamase-producing Pseudomonas aeruginosa in Switzerland 2022-2023. Eur J Clin Microbiol Infect Dis. 2024 Mar;43(3):551-7. [DOI:10.1007/s10096-024-04752-8] [PMID] [PMCID]
54. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355-62. [DOI:10.1016/S1473-3099(11)70059-7] [PMID]
55. Pfeifer Y, Wilharm G, Zander E, Wichelhaus TA, Göttig S, Hunfeld KP, et al. Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J Antimicrob Chemother. 2011;66(9):1998-2001. [DOI:10.1093/jac/dkr256] [PMID]
56. Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56(2):1087-9. [DOI:10.1128/AAC.05620-11] [PMID] [PMCID]
57. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol. 2013;303(6-7):298-304. [DOI:10.1016/j.ijmm.2013.02.001] [PMID]
58. Hematzadeh A, Haghkhah M. Biotyping of isolates of Pseudomonas aeruginosa isolated from human infections by RAPD and ERIC-PCR. Heliyon. 2021;7(9):e07967. [DOI:10.1016/j.heliyon.2021.e07967] [PMID] [PMCID]
59. Stanton RA, Campbell D, McAllister GA, Breaker E, Adamczyk M, Daniels JB, et al. Whole-Genome Sequencing Reveals Diversity of Carbapenem-Resistant Pseudomonas aeruginosa Collected through CDC's Emerging Infections Program, United States, 2016-2018. Antimicrob Agents Chemother. 2022;66(9):e0049622. [DOI:10.1128/aac.00496-22] [PMID] [PMCID]
60. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-58. [DOI:10.2147/IDR.S173867] [PMID] [PMCID]
61. Saha K, Kabir ND, Islam MR, Amin MB, Hoque KI, Halder K, et al. Isolation and characterisation of carbapenem-resistant Pseudomonas aeruginosa from hospital environments in tertiary care hospitals in Dhaka, Bangladesh. J Glob Antimicrob Resist. 2022;30:31-7. [DOI:10.1016/j.jgar.2022.04.008] [PMID]
62. Zakhour J, El Ayoubi LE, Kanj SS. Metallo-beta-lactamases: Mechanisms, treatment challenges, and future prospects. Expert Rev Anti-infect Ther. 2024;22(4):189-201. [DOI:10.1080/14787210.2024.2311213] [PMID]
63. Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol. 2023;31(7):735-48. [DOI:10.1016/j.tim.2023.01.013] [PMID]
64. Yan YH, Li G, Li GB. Principles and current strategies targeting metallo‐β‐lactamase mediated antibacterial resistance. Med Res Rev. 2020;40(5):1558-92. [DOI:10.1002/med.21665] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc