year 18, Issue 2 (March - April 2024)                   Iran J Med Microbiol 2024, 18(2): 80-88 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hamayeli H, Abdi-Ali A, Attaran B, Shafiei M, Modaresi M. Isolation, Identification and Antibiotic Resistance of Anaerobic Bacteria in Sputum of Cystic Fibrosis Patients from Children's Medical Center of Tehran, Iran. Iran J Med Microbiol 2024; 18 (2) :80-88
URL: http://ijmm.ir/article-1-2340-en.html
1- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
2- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran , abdialya@alzahra.ac.ir
3- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
4- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran & Pediatric Pulmonary Disease and Sleep Medicine Research Center, Pediatric Centre of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
Abstract:   (1223 Views)

Background and Aim: Following genetic defects in cystic fibrosis (CF), mucus accumulation and hypoxic gradients develop in the lungs creating conditions for the anaerobic bacterial colonization. This study investigated the difference between the prevalence of some anaerobic bacteria and antibiotic resistance among healthy and CF groups.
Materials and Methods: In this research, anaerobic bacteria were investigated in sputum samples of the CF patients (50 people) and the healthy individuals (18 people) in Tehran, Iran by culture method during 2021-2022. The sputum samples were cultured on Brucella blood agar, Brain heart infusion agar with vancomycin, Laked brucella blood agar with kanamycin and vancomycin, and Brucella blood agar with neomycin and vancomycin. Gram-negative and Gram-positive isolates were identified using biochemical methods and 16S rRNA sequencing, respectively. In addition, the minimum inhibitory concentration (MIC) of the bacterial isolates was tested for ampicillin, clindamycin and ampicillin/sulbactam using E-test strips.
Results: In the culture-based method, anaerobic bacteria were isolated in 33% and 24% of the healthy and CF groups, respectively. Bacterial isolates detected include Dialister spp., Fusobacterium spp., Lactobacillus spp., and Prevotella spp. The Fusobacterium isolates from the healthy group were sensitive to ampicillin, but 33% of Fusobacterium isolates from the CF group showed resistance to this antibiotic.
Conclusion: In this study, the presence of anaerobic bacteria in the lungs of healthy and CF individuals was determined. The total frequency of these bacteria was higher in the healthy group than the CF group. The abundance of Gram-positive Lactobacillus bacteria, as potentially beneficial bacteria, was lower in the CF patients than in the healthy individuals.

Full-Text [PDF 1055 kb]   (390 Downloads) |   |   Full-Text (HTML)  (183 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2024/02/9 | Accepted: 2024/05/8 | ePublished: 2024/05/25

References
1. Lu Z, Imlay JA. When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol. 2021;19(12):774-85. [DOI:10.1038/s41579-021-00583-y] [PMID] [PMCID]
2. Chen X-F, Hou X, Xiao M, Zhang L, Cheng J-W, Zhou M-L, et al. Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) Analysis for the Identification of Pathogenic Microorganisms: A Review. Microorganisms. 2021;9(7):1536. [DOI:10.3390/microorganisms9071536] [PMID] [PMCID]
3. Alves J, Peres S, Gonçalves E, Mansinho K. Anaerobic Bacteria with Clinical Relevance: Morphologic and Taxonomic Classification, Distribution among Human Microbiota and Microbiologic Diagnosis. Acta Med Port. 2017;30(5):409-17. [DOI:10.20344/amp.8098] [PMID]
4. McIlvanna E, Linden GJ, Craig SG, Lundy FT, James JA. Fusobacterium nucleatum and oral cancer: a critical review. BMC Cancer. 2021;21:1212. [DOI:10.1186/s12885-021-08903-4] [PMID] [PMCID]
5. Thornton CS, Acosta N, Surette MG, Parkins MD. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J Pediatr Infect Dis. 2022;11(Supplement_2):S13-S22. [DOI:10.1093/jpids/piac036] [PMID] [PMCID]
6. Lambiase A, Catania MR, Rossano F. Anaerobic bacteria infection in cystic fibrosis airway disease. New Microbiol. 2010;33(3):185-94. [DOI:10.4081/mm.2011.2357]
7. Stokowa-Sołtys K, Wojtkowiak K, Jagiełło K. Fusobacterium nucleatum - Friend or foe?. J Inorg Biochem. 2021;224:111586. [DOI:10.1016/j.jinorgbio.2021.111586] [PMID]
8. Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and their roles in the progression of respiratory diseases. Pathogens. 2023;12(9):1110. [DOI:10.3390/pathogens12091110] [PMID] [PMCID]
9. Morio F, Jean-Pierre H, Dubreuil L, Jumas-Bilak E, Calvet L, Mercier G, et al. Antimicrobial Susceptibilities and Clinical Sources of Dialister Species. J Antimicrob Agents Chemother. 2007;51(12):4498-501. [DOI:10.1128/AAC.00538-07] [PMID] [PMCID]
10. Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363-74. [DOI:10.1111/imm.12760] [PMID] [PMCID]
11. López-Causapé C, Rojo-Molinero E, Macià MD, Oliver A. The problems of antibiotic resistance in cystic fibrosis and solutions. Expert Rev Respir Med. 2015;9(1):73-88. [DOI:10.1586/17476348.2015.995640] [PMID]
12. Flynn JM, Cameron LC, Wiggen TD, Dunitz JM, Harcombe WR, Hunter RC. Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis. MSphere. 2020;5(2):10-128. [DOI:10.1128/mSphere.00343-20] [PMID] [PMCID]
13. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. 2008;177(9):995-1001. [DOI:10.1164/rccm.200708-1151OC] [PMID]
14. Gajdács M, Spengler G, Urbán E. Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik's Cube of Clinical Microbiology?. Antibiotics. 2017;6(4):25. [DOI:10.3390/antibiotics6040025] [PMID] [PMCID]
15. Leber AL. Clinical Microbiology Procedures Handbook: John Wiley & Sons; 2020.
16. Nagy E, Boyanova L, Justesen US. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin Microbiol Infect. 2018;24(11):1139-48. [DOI:10.1016/j.cmi.2018.02.008] [PMID]
17. Nwaokorie FO, Coker A, Ogunsola F, Avila-Campos MJ, Ayanbadejo P, Umeizudike K, et al. Isolation and molecular identification of Fusobacterium nucleatum from Nigerian patients with oro-facial infections. West Afr J Med. 2011;30(2):1-5.
18. Abellan-Schneyder I, Matchado MS, Reitmeier S, Sommer A, Sewald Z, Baumbach J, et al. Primer, pipelines, parameters: issues in 16S rRNA gene sequencing. Msphere. 2021;6(1):10-128. [DOI:10.1128/mSphere.01202-20] [PMID] [PMCID]
19. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547. [DOI:10.1093/molbev/msy096] [PMID] [PMCID]
20. CLSI. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard. CLSI Document M11-A8; CLSI: Wayne, PA, USA. 2012. Access from: [https://clsi.org/media/1468/m11a8_sample.pdf]
21. CLSI. Performance standards for antimicrobial susceptibility testing, M100, 30st ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute. 2020. Access from: [https://clsi.org/media/3481/m100ed30_sample.pdf]
22. La Rosa R, Johansen HK, Molin S. Adapting to the airways: metabolic requirements of Pseudomonas aeruginosa during the infection of cystic fibrosis patients. Metabolites. 2019;9(10):234. [DOI:10.3390/metabo9100234] [PMID] [PMCID]
23. Lamoureux C, Guilloux CA, Beauruelle C, Gouriou S, Ramel S, Dirou A, et al. An observational study of anaerobic bacteria in cystic fibrosis lung using culture dependant and independent approaches. Sci Rep. 2021;11(1):6845. [DOI:10.1038/s41598-021-85592-w] [PMID] [PMCID]
24. Thornton CS, Surette MG. Potential contributions of anaerobes in cystic fibrosis airways. J Clin Microbiol. 2021;59(3):10-128. [DOI:10.1128/JCM.01813-19] [PMID] [PMCID]
25. Skolnik K, Quon BS. Recent advances in the understanding and management of cystic fibrosis pulmonary exacerbations. F1000Res. 2018;7:F1000 Faculty Rev-575. [DOI:10.12688/f1000research.13926.1] [PMID] [PMCID]
26. Nicod LP, Kolls JK. Chair's summary: mechanisms of exacerbation of lung diseases. Ann Am Thorac Soc. 2015;12(Supplement 2):S112-S4. [DOI:10.1513/AnnalsATS.201503-139AW] [PMID] [PMCID]
27. Muhlebach MS, Hatch JE, Einarsson GG, McGrath SJ, Gilipin DF, Lavelle G, et al. Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study. Eur Respir J. 2018;52(1):1800242. [DOI:10.1183/13993003.00242-2018] [PMID] [PMCID]
28. Moogahi S, Beni FT, Hashemzadeh M, Dezfuli AA. Molecular identification and biofilm formation of aerobic and anaerobic coinfection bacterial isolated from cystic fibrosis patients in southwest Iran from 2014 to 2022. Mol Biol Rep. 2023;50(10):8225-35. [DOI:10.1007/s11033-023-08724-7] [PMID]
29. Goudarzi SM, Arani YS, Ali AA, Mohammadi P, Ghorbanmehr N, Modaresi M, et al. Comparison of culture and PCR-DGGE methods to evaluate the airways of cystic fibrosis patients and determination of their antibiotic resistance profile. Iran J Microbiol. 2023;15(6):750-8.
30. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. 2008;177(9):995-1001. [DOI:10.1164/rccm.200708-1151OC] [PMID]
31. Rhoads DD, Wolcott RD, Sun Y, Dowd SE. Comparison of Culture and Molecular Identification of Bacteria in Chronic Wounds. Int J Mol Sci. 2012;13(3):2535-50. [DOI:10.3390/ijms13032535] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc