year 18, Issue 2 (March - April 2024)                   Iran J Med Microbiol 2024, 18(2): 98-106 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Agab Hamed N, Khudhur Abdljalel M, Ibrahim Sood L. Investigating the Salivary Microbiome Through Meta-Genomics: A Clinical Study on Periodontal Health. Iran J Med Microbiol 2024; 18 (2) :98-106
URL: http://ijmm.ir/article-1-2111-en.html
1- Department of Periodontics Dentistry, College of Dentistry, University of Anbar, Ramadi, Iraq , den.nuha.agab@uoanbar.edu.iq
2- Department of Oral and Maxillofacial Dentistry, College of Dentistry, University of Anbar, Ramadi, Iraq
3- Department of Pediatric Dentistry, College of Dentistry, University of Anbar, Ramadi, Iraq
Abstract:   (183 Views)

Background and Objective: Periodontal diseases are highly prevalent oral health conditions with significant diagnostic challenges. Very few studies have addressed the microbial assessment of the salivary microbiome as biomarker development platform. The objective of this study was to investigate the differential abundance of the oral microbial taxa in the saliva samples of periodontal disease patients and healthy controls for oral microbiota-based diagnostic biomarker discovery.
Methods: The saliva samples were collected from a well-phenotyped cohort under the National Institute of Dental and Craniofacial Research Institutional Review Board-approved protocol. Genomic DNA was extracted from the samples. Microbiota profiles were generated by processing variable regions of 16S rRNA gene using next-generation sequencing by Illumina MiSeq platform. Differential abundance testing was performed using DESeq2. One of the clustering methods of the rank-ration test was presented in the heat map, along with the relative taxon abundance. Finally, the metagenomics profiling was performed.
Results: Porphyromonas gingivalis and Tannerella forsythia were significantly more abundant in the saliva samples of periodontal disease patients in terms of differential abundance. Streptococcus sanguinis has potential as negative disease-associated oral microbiota-based diagnostic biomarker. The findings were statistically significant and validated by the findings of previous oral microbiome studies.
Conclusion: Our findings provide evidence that the salivary microbiome could be rich source of diagnostic biomarkers missing in the current diagnostic strategies for the periodontal diseases such as gingivitis and periodontitis. These biomarkers might not only shed light on the disease pathogenesis, but also lead us to identify new molecular targets for the improved treatment and management of the periodontal diseases.

Full-Text [PDF 481 kb]   (24 Downloads)    
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2024/02/22 | Accepted: 2024/05/15 | ePublished: 2024/05/25

References
1. Komori E, Kato-Kogoe N, Imai Y, Sakaguchi S, Taniguchi K, Omori M, et al. Changes in salivary microbiota due to gastric cancer resection and its relation to gastric fluid microbiota. Sci Rep. 2023;13(1):15863. [DOI:10.1038/s41598-023-43108-8] [PMID] [PMCID]
2. Li Z, Fu R, Huang X, Wen X, Zhang L. A decade of progress: bibliometric analysis of trends and hotspots in oral microbiome research (2013-2022). Front Cell Infect Microbiol. 2023;13:1195127. [DOI:10.3389/fcimb.2023.1195127] [PMID] [PMCID]
3. Hamed NA, Mirza KB, AL-Rubaie MS. Effects of oral contraceptives intake on the gingiva. Iraqi Postgrad Med J. 2010;9:335-41.
4. Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The contribution of the human oral microbiome to oral disease: a review. Microorganisms. 2023;11(2):318. [DOI:10.3390/microorganisms11020318] [PMID] [PMCID]
5. Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current state and challenges of the global outcomes of dental caries research in the meta-omics era. Front Cell Infect Microbiol. 2022;12:887907. [DOI:10.3389/fcimb.2022.887907] [PMID] [PMCID]
6. Murugesan S, Al Khodor S. Salivary microbiome and hypertension in the Qatari population. J Transl Med. 2023;21(1):454. [DOI:10.1186/s12967-023-04247-8] [PMID] [PMCID]
7. Sood LI, Hamed NA, Jabbar MRA, Altaee ZA. Evaluation of some oral factors and periodontal health status in primary school-children. J Popul Ther Clin Pharmacol. 2023;30(1):312-23. [DOI:10.47750/jptcp.2023.1065]
8. Nagata N, Nishijima S, Kojima Y, Hisada Y, Imbe K, Miyoshi-Akiyama T, et al. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology. 2022;163(1):222-38. [DOI:10.1053/j.gastro.2022.03.054] [PMID]
9. Okiye ME, Velez MA, Sugai J, Kinney J, Giannobile WV, Tripathi A, Sherman DH. Investigating Metabolic Trends in the Oral Cavity to Identify Novel Metabolites. bioRxiv. 2023:2023-06. [DOI:10.1101/2023.06.26.546600]
10. Rahman B, Al-Marzooq F, Saad H, Benzina D, Al Kawas S. Dysbiosis of the subgingival microbiome and relation to periodontal disease in association with obesity and overweight. Nutrients. 2023;15(4):826. [DOI:10.3390/nu15040826] [PMID] [PMCID]
11. Gül F, Karadayı S, Yurdabakan Z, Özbek T, Karadayı B. Investigating changes in salivary microbiota due to dental treatment: A metagenomic analysis study for forensic purposes. Forensic Sci Int. 2022;340:111447. [DOI:10.1016/j.forsciint.2022.111447] [PMID]
12. Hajishengallis G. Interconnection of periodontal disease and comorbidities: Evidence, mechanisms, and implications. Periodontol 2000. 2022;89(1):9-18. [DOI:10.1111/prd.12430] [PMID] [PMCID]
13. Hajjo R, Sabbah DA, Al Bawab AQ. Unlocking the potential of the human microbiome for identifying disease diagnostic biomarkers. Diagnostics. 2022;12(7):1742. [DOI:10.3390/diagnostics12071742] [PMID] [PMCID]
14. Mira A, Simon‐Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. J Clin Periodontol. 2017;44:S23-38. [DOI:10.1111/jcpe.12671]
15. Imchen M, Anju VT, Busi S, Mohan MS, Subhaswaraj P, Dyavaiah M, et al. Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res. 2022;265:127207. [DOI:10.1016/j.micres.2022.127207] [PMID]
16. Fiorillo L, Cervino G, Laino L, D'Amico C, Mauceri R, Tozum TF, et al. Porphyromonas gingivalis, periodontal and systemic implications: a systematic review. Dent J. 2019;7(4):114. [DOI:10.3390/dj7040114] [PMID] [PMCID]
17. Jiang Z, Wang J, Qian X, Zhang Z, Wang S. Oral microbiota may predict the presence of esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2023;149(8):4731-9. [DOI:10.1007/s00432-022-04393-4] [PMID]
18. Joseph S, Carda-Diéguez M, Aduse-Opoku J, Alsam A, Mira A, Curtis MA. The murine oral metatranscriptome reveals microbial and host signatures of periodontal disease. J Dent Res. 2023;102(5):565-73. [DOI:10.1177/00220345221149675] [PMID] [PMCID]
19. Kikuchi T, Hayashi J ichiro, Mitani A. Next-generation examination, diagnosis, and personalized medicine in periodontal disease. J Pers Med. 2022;12(10):1743. [DOI:10.3390/jpm12101743] [PMID] [PMCID]
20. Kim JM, Yoo SY, An JS, Woo JJ, Cho YD, Park HE, et al. Effect of a multichannel oral irrigator on periodontal health and the oral microbiome. Sci Rep. 2023;13(1):12043. [DOI:10.1038/s41598-023-38894-0] [PMID] [PMCID]
21. Santonocito S, Ferlito S, Polizzi A, Ronsivalle V, Sclafani R, Valletta A, et al. Therapeutic and metagenomic potential of the biomolecular therapies against periodontitis and the oral microbiome: current evidence and future perspectives. Int J Mol Sci. 2022;23(22):13708. [DOI:10.3390/ijms232213708] [PMID] [PMCID]
22. Belibasakis GN, Bostanci N, Marsh PD, Zaura E. Applications of the oral microbiome in personalized dentistry. Arch Oral Biol. 2019;104:7-12. [DOI:10.1016/j.archoralbio.2019.05.023] [PMID]
23. Huang S, He T, Yue F, Xu X, Wang L, Zhu P, et al. Longitudinal multi-omics and microbiome meta-analysis identify an asymptomatic gingival state that links gingivitis, periodontitis, and aging. MBio. 2021;12(2):10-128. [DOI:10.1128/mBio.03281-20] [PMID] [PMCID]
24. Sedghi LM, Bacino M, Kapila YL. Periodontal disease: the good, the bad, and the unknown. Front Cell Infect Microbiol. 2021;11:766944. [DOI:10.3389/fcimb.2021.766944] [PMID] [PMCID]
25. Vasquez AA, Ram JL, Qazazi MS, Sun J, Kato I. Oral Microbiome: Potential Link to Systemic Diseases and Oral Cancer. In: Sun, J., Dudeja, P. (eds) Mechanisms Underlying Host-Microbiome Interactions in Pathophysiology of Human Diseases. Physiology in Health and Disease. Springer: Boston, MA. 2018. pp. 195-246. [DOI:10.1007/978-1-4939-7534-1_9]
26. Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018;13(08):915-32. [DOI:10.2217/fmb-2018-0043] [PMID] [PMCID]
27. Uzochukwu I, Moyes D, Proctor G, Ide M. The key players of dysbiosis in Noma disease; A systematic review of etiological studies. Front Oral Health. 2023;4:1095858. [DOI:10.3389/froh.2023.1095858] [PMID] [PMCID]
28. Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B. Probiotic approach to prevent antibiotic resistance. Ann Med. 2016;48(4):246-55. [DOI:10.3109/07853890.2016.1161232] [PMID]
29. Wang L, Li F, Gu B, Qu P, Liu Q, Wang J, et al. Metaomics in clinical laboratory: potential driving force for innovative disease diagnosis. Front Microbiol. 2022;13:883734. [DOI:10.3389/fmicb.2022.883734] [PMID] [PMCID]
30. Wu TT, Sohn M, Manning S, Beblavy R, Gill S, Quataert S, et al. Metagenomic analysis examines oral microbiome changes and interplay with immune response following prenatal total oral rehabilitation. J Transl Med. 2023;21(1):172. [DOI:10.1186/s12967-023-03997-9] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc