year 17, Issue 5 (September - October 2023)                   Iran J Med Microbiol 2023, 17(5): 550-558 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Javadi Z, Ownagh A. Molecular diagnosis of Coxiella burnetii in milk based on Plasmid and Transposon Genes. Iran J Med Microbiol 2023; 17 (5) :550-558
URL: http://ijmm.ir/article-1-2023-en.html
1- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azerbaijan, Iran
2- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, West Azerbaijan, Iran , a.ownagh@urmia.ac.ir
Abstract:   (357 Views)

Background and Aim: All Coxiella burnetii isolates carry one of four large, conserved, autonomously replicating plasmids or a plasmid-like chromosomally integrated sequence.
Materials and Methods: In Sulaimani City, Iraq, from September 2020 to September 2021, 200 positive nasopharyngeal samples were collected, and 17 known variants with the S gene were randomly selected for whole RdRp, E, and N gene sequencing. To facilitate sequencing, six primer sets were designed for the RdRp gene (RdRp1, RdRp2, RdRp3), two for the N gene (N1, N2), and one for the E gene.
Results: In total, out of 400 milk samples collected from cow, buffalo, sheep, and goats based on the IS1111 gene, 62 (15.5%), (95% CI: 12.3%–19.4%) samples were positive for C. burnetii. Out of 62 positive samples, 16 (25.8%), (95% CI: 16.6%–37.9%) samples contained QpH1 plasmid gene and 5 (8%), (95% CI: 3.5%–17.5%) samples contained QpRS plasmid gene. Also, there were 7 (11.3%), (95% CI: 5.6%–21.5%) positive samples for QpDG and 5 (11.3%), (95% CI: 3.5%–17.5%) positive to QpDV gene. The Phylogenetic analysis of plasmid sequences showed that all obtained sequences have 100% similarity. A phylogenetic tree constructed based on neighbor-joining analysis of partial genes revealed that 20 sequenced isolates were closely clustered together showing 99.9% similarity which can be considered identical and also revealed the 100% similarly of these sequences with more sequences in the gene bank from different sources.
Conclusion: Our results indicated that nested PCR has high sensitivity in detecting plasmids.

Full-Text [PDF 888 kb]   (38 Downloads) |   |   Full-Text (HTML)  (13 Views)  
Type of Study: Original Research Article | Subject: Zoonoses Research
Received: 2023/04/25 | Accepted: 2023/08/17 | ePublished: 2023/11/29

References
1. Ullah Q, Jamil T, Saqib M, Iqbal M, Neubauer H. Q Fever-A Neglected Zoonosis. Microorganisms. 2022;10(8):1530. [DOI:10.3390/microorganisms10081530] [PMID] [PMCID]
2. Fullerton Marissa S, Colonne Punsiri M, Dragan Amanda L, Brann Katelynn R, Kurten Richard C, Voth Daniel E. Neurotransmitter System-Targeting Drugs Antagonize Growth of the Q Fever Agent, Coxiella burnetii, in Human Cells. mSphere. 2021;6(4):e0044221. [DOI:10.1128/mSphere.00442-21] [PMID] [PMCID]
3. Anderson A, Bijlmer H, Fournier P-E, Graves S, Hartzell J, Kersh GJ, et al. Diagnosis and management of Q fever-United States, 2013: recommendations from CDC and the Q Fever Working Group. MMWR Recomm Rep. 2013;62(3):1-29.
4. Voth DE, Beare PA, Howe D, Sharma UM, Samoilis G, Cockrell DC, et al. The Coxiella burnetii cryptic plasmid is enriched in genes encoding type IV secretion system substrates. J Bacteriol. 2011;193(7):1493-503. [DOI:10.1128/JB.01359-10] [PMID] [PMCID]
5. Luo S, Lu S, Fan H, Chen Z, Sun Z, Hu Y, et al. The Coxiella burnetii QpH1 plasmid is a virulence factor for colonizing bone marrow-derived murine macrophages. J Bacteriol. 2021;203(9):e00588-20. [DOI:10.1128/JB.00588-20] [PMID] [PMCID]
6. Toman R, Heinzen RA, Samuel JE, Mege J-L. Coxiella burnetii: Recent Advances and New Perspectives in Research of the Q Fever Bacterium: Springer Publishing Company, Incorporated; 2014.
7. Denison AM, Thompson HA, Massung RF. IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol. 2007;7(1):91. [DOI:10.1186/1471-2180-7-91] [PMID] [PMCID]
8. Hanczaruk M, Meyer H, Frangoulidis D, editors. A genotyping system for Coxiella burnetii based on IS1111-elements2015: ELSEVIER GMBH, URBAN & FISCHER VERLAG OFFICE JENA, PO BOX 100537, 07705 JENA.
9. Sobotta K, Hillarius K, Jimenez PH, Kerner K, Heydel C, Menge C. Interaction of Coxiella burnetii strains of different sources and genotypes with bovine and human monocyte-derived macrophages. Front Cell Infect Microbiol. 2018;7:543. [DOI:10.3389/fcimb.2017.00543] [PMID] [PMCID]
10. Beare PA, Samuel JE, Howe D, Virtaneva K, Porcella SF, Heinzen RA. Genetic diversity of the Q fever agent, Coxiella burnetii, assessed by microarray-based whole-genome comparisons. J Bacteriol. 2006;188(7):2309-24. [DOI:10.1128/JB.188.7.2309-2324.2006] [PMID] [PMCID]
11. Long CM, Beare PA, Cockrell DC, Larson CL, Heinzen RA. Comparative virulence of diverse Coxiella burnetii strains. Virulence. 2019;10(1):133-50. [DOI:10.1080/21505594.2019.1575715] [PMID] [PMCID]
12. Russell-Lodrigue K, Andoh M, Poels M, Shive H, Weeks B, Zhang G, et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun. 2009;77(12):5640-50. [DOI:10.1128/IAI.00851-09] [PMID] [PMCID]
13. Martinez E, Cantet F, Fava L, Norville I, Bonazzi M. Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog. 2014;10(3):e1004013. [DOI:10.1371/journal.ppat.1004013] [PMID] [PMCID]
14. Kampschreur LM, Delsing CE, Groenwold RH, Wegdam-Blans MC, Bleeker-Rovers CP, de Jager-Leclercq MG, et al. Chronic Q fever in the Netherlands 5 years after the start of the Q fever epidemic: results from the Dutch chronic Q fever database. J Clin Microbiol. 2014;52(5):1637-43. [DOI:10.1128/JCM.03221-13] [PMID] [PMCID]
15. Khademi P, Ownagh A, Ataei B, Kazemnia A, Enferadi A, Khalili M, et al. Prevalence of C. burnetii DNA in sheep and goats milk in the northwest of Iran. Int J Food Microbiol. 2020;331:108716. [DOI:10.1016/j.ijfoodmicro.2020.108716] [PMID]
16. Khademi P, Ownagh A, Ataei B, Kazemnia A, Eydi J, Khalili M, et al. Molecular detection of Coxiella burnetii in horse sera in Iran. Comp Immunol Microbiol Infect Dis. 2020;72:101521. [DOI:10.1016/j.cimid.2020.101521] [PMID] [PMCID]
17. Berri M, Laroucau K, Rodolakis A. The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Vet Microbiol. 2000;72(3):285-93. [DOI:10.1016/S0378-1135(99)00178-9] [PMID]
18. Khademi P, Ownagh A, Mardani K, Khalili M. Prevalence of Coxiella burnetii in milk collected from buffalo (water buffalo) and cattle dairy farms in Northwest of Iran. Comp Immunol Microbiol Infect Dis. 2019;67:101368. [DOI:10.1016/j.cimid.2019.101368] [PMID]
19. Zhang GQ, Hotta A, Mizutani M, Ho T, Yamaguchi T, Fukushi H, et al. Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol. 1998;36(8):2210-3. [DOI:10.1128/JCM.36.8.2210-2213.1998] [PMID] [PMCID]
20. Maturana P, Graham JG, Sharma UM, Voth DE. Refining the plasmid-encoded type IV secretion system substrate repertoire of Coxiella burnetii. J Bacteriol. 2013;195(14):3269-76. [DOI:10.1128/JB.00180-13] [PMID] [PMCID]
21. Angelakis E, Million M, D'amato F, Rouli L, Richet H, Stein A, et al. Q fever and pregnancy: disease, prevention, and strain specificity. Eur J Clin Microbiol Infect Dis. 2013;32(3):361-8. [DOI:10.1007/s10096-012-1750-3] [PMID]
22. Angelakis E, Mediannikov O, Socolovschi C, Mouffok N, Bassene H, Tall A, et al. Coxiella burnetii-positive PCR in febrile patients in rural and urban Africa. Int J Infect Dis. 2014;28:107-10. [DOI:10.1016/j.ijid.2014.05.029] [PMID]
23. Mediannikov O, Fenollar F, Socolovschi C, Diatta G, Bassene H, Molez J-F, et al. Coxiella burnetii in humans and ticks in rural Senegal. PLOS Negl Trop Dis. 2010;4(4):e654. [DOI:10.1371/journal.pntd.0000654] [PMID] [PMCID]
24. Sulyok KM, Hornok S, Abichu G, Erdelyi K, Gyuranecz M. Identification of novel Coxiella burnetii genotypes from Ethiopian ticks. PLoS One. 2014;9(11):e113213. [DOI:10.1371/journal.pone.0113213] [PMID] [PMCID]
25. Davoust B, Marié J-L, de Santi VP, Berenger J-M, Edouard S, Raoult D. Three-toed sloth as putative reservoir of Coxiella burnetii, Cayenne, French Guiana. Emerg Infect Dis. 2014;20(10):1760. [DOI:10.3201/eid2010.140694] [PMID] [PMCID]
26. Sulyok KM, Kreizinger Z, Hornstra HM, Pearson T, Szigeti A, Dán Á, et al. Genotyping of Coxiella burnetiifrom domestic ruminants and human in Hungary: indication of various genotypes. BMC Vet Res. 2014;10(1):1-6. [DOI:10.1186/1746-6148-10-107] [PMID] [PMCID]
27. Gyuranecz M, Sulyok KM, Balla E, Mag T, Balazs A, Simor Z, et al. Q fever epidemic in Hungary, April to July 2013. Eurosurveillance. 2014;19(30):20863. [DOI:10.2807/1560-7917.ES2014.19.30.20863] [PMID]
28. Álvarez-Alonso R, Zendoia II, Barandika JF, Jado I, Hurtado A, López CM, et al. Monitoring Coxiella burnetii infection in naturally infected dairy sheep flocks throughout four lambing seasons and investigation of viable bacteria. Front Vet Sci. 2020;7:352. [DOI:10.3389/fvets.2020.00352] [PMID] [PMCID]
29. Plummer PJ, McClure JT, Menzies P, Morley PS, Van den Brom R, Van Metre DC. Management of C oxiella burnetii infection in livestock populations and the associated zoonotic risk: A consensus statement. J Vet Intern Med. 2018;32(5):1481-94. [DOI:10.1111/jvim.15229] [PMID] [PMCID]
30. Esmaeili S, Mobarez AM, Khalili M, Mostafavi E. High prevalence and risk factors of Coxiella burnetii in milk of dairy animals with a history of abortion in Iran. Comp Immunol Microbiol Infect Dis. 2019;63:127-30. [DOI:10.1016/j.cimid.2019.01.015] [PMID]
31. Halsby KD, Kirkbride H, Walsh AL, Okereke E, Brooks T, Donati M, et al. The epidemiology of Q fever in England and Wales 2000-2015. Vet Sci. 2017;4(28):2-7. [DOI:10.3390/vetsci4020028] [PMID] [PMCID]
32. van der Hoek W, Hunink J, Vellema P, Droogers P. Q fever in The Netherlands: the role of local environmental conditions. Int J Environ Res Public Health. 2011;21(6):441-51. [DOI:10.1080/09603123.2011.574270] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc