year 16, Issue 5 (September - October 2022)                   Iran J Med Microbiol 2022, 16(5): 457-464 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dirbazian A, Sadeghimanesh M, Morovvati A, Soleimani M, Mirjani R, Mousavi S H. Molecular Detection of Infectious Endocarditis (Bartonella quintana) Bacteria from Selected Military Hospitals. Iran J Med Microbiol 2022; 16 (5) :457-464
URL: http://ijmm.ir/article-1-1685-en.html
1- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
2- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran , Soleimanidor@yahoo.com
3- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
4- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
Abstract:   (1212 Views)

Background and Aim: Bartonella quintana is an aerobic, gram-negative, rod-shaped, and polar bacterium. Detection of this bacterium is done through blood culture in an agar medium, and the longtime of detection by culture has made molecular methods such as PCR important for more accurate and faster detection.
Materials and Methods: For this reason, 100 cultured negative endocarditis specimens were collected in this study. DNA extraction was performed from B. quintana, and the concentration and quality of the obtained DNA were measured. PCR reaction was performed on the genome of negative control samples. To clone a portion of the amplified gene in PUC 18 plasmid, the PCR product was first purified. After ligation, JM107 E. coli susceptible to calcium chloride was used. Transformed bacteria were cultured on LB Broth medium containing Ampicillin antibiotic. Then 2 to 3 white colonies were selected, and PCR was performed. Plasmid extraction was performed after confirming the presence of recombinant and inserted plasmids.
Results: The last dilution of PUC18 plasmid for B. quintana with an initial concentration of 780 ng/µL, which formed a detectable band on the gel, was calculated to be 10-7, and the minimum number of detectable copies in a 25 μL PCR reaction equal to 24 copies. . In quantitative DNA analysis, its amount was calculated between 1.69 and 1.8.
Conclusion: The collected samples were then examined for the presence of B. quintana in patients. Of the 60 samples collected, none were positive.

Full-Text [PDF 610 kb]   (558 Downloads) |   |   Full-Text (HTML)  (682 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2022/02/27 | Accepted: 2022/05/13 | ePublished: 2022/08/8

References
1. Brouqui P. Trench Fever. Hunter's Tropical Medicine and Emerging Infectious Diseases. Elsevier. 2020:602-3. [DOI:10.1016/B978-0-323-55512-8.00072-7]
2. La Scola B, Raoult D. Culture of Bartonella quintana and Bartonella henselae from human samples: a 5-year experience (1993 to 1998). J Clin Microbiol. 1999;37(6):1899-905. [DOI:10.1128/JCM.37.6.1899-1905.1999] [PMID] [PMCID]
3. Gutiérrez R, Shalit T, Markus B, Yuan C, Nachum-Biala Y, Elad D, et al. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int J Syst Evol Microbiol. 2020;70(3):1656-65. [DOI:10.1099/ijsem.0.003952] [PMID]
4. Maurin M, Raoult D. Bartonella (Rochalimaea) quintana infections. Clin Microbiol Rev. 1996;9(3):273-92. [DOI:10.1128/CMR.9.3.273] [PMID] [PMCID]
5. Rolain J-M, Franc M, Davoust B, Raoult D. Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in cat fleas, France. Emerg Infect Dis. 2003;9(3):339. [DOI:10.3201/eid0903.020278] [PMID] [PMCID]
6. Ohl ME, Spach DH. Bartonella quintana and urban trench fever. Clin Infect Dis. 2000;31(1): 131-5. [DOI:10.1086/313890] [PMID]
7. Anstead GM. The centenary of the discovery of trench fever, an emerging infectious disease of World War 1. Lancet Infect Dis. 2016;16(8):e164-e72. [DOI:10.1016/S1473-3099(16)30003-2]
8. Foucault C, Barrau K, Brouqui P, Raoult D. Bartonella quintana bacteremia among homeless people. Clin Infect Dis. 2002;35(6):684-9. [DOI:10.1086/342065] [PMID]
9. Raoult D, Roux V. The body louse as a vector of reemerging human diseases. Clin Infect Dis.1999; 29(4):888-911. [DOI:10.1086/520454] [PMID]
10. Rolain JM, Foucault C, Brouqui P, Raoult D. Erythroblast cells as a target for Bartonella quintana in homeless people. Ann N Y Acad Sci. 2003;990(1):485-7. [DOI:10.1111/j.1749-6632.2003.tb07414.x] [PMID]
11. Dehio C. Recent progress in understanding Bartonella-induced vascular proliferation. Current opinion in microbiology. 2003;6(1):61-5. [DOI:10.1016/S1369-5274(03)00006-7]
12. Meghari S, Rolain J-M, Grau GE, Platt E, Barrassi L, Mege J-L, et al. Antiangiogenic effect of erythromycin: an in vitro model of Bartonella quintana infection. J Infect Dis. 2006;193(3):380-6. [DOI:10.1086/499276] [PMID]
13. Alsmark CM, Frank AC, Karlberg EO, Legault B-A, Ardell DH, Canbäck B, et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc Natl Acad Sci U S A. 2004;101(26):9716-21. [DOI:10.1073/pnas.0305659101] [PMID] [PMCID]
14. Lam JC, Fonseca K, Pabbaraju K, Meatherall BL. Case report: Bartonella quintana endocarditis outside of the Europe-African gradient: comprehensive review of cases within North America. Am J Trop Med Hyg. 2019;100(5):1125. [DOI:10.4269/ajtmh.18-0929] [PMID] [PMCID]
15. Tavassoli M. Cross-sectional study of Bartonella, Rickettsia and Wolbachia by molecular method in Fleas Ctenocephalides canis and Pulex irritans from the West and Northwest of Iran. J Babol Univ Medical Sci. 2020;20(4):505-18. [DOI:10.52547/jarums.20.4.505]
16. Foucault C, Brouqui P, Raoult D. Bartonella quintana characteristics and clinical management. Emerg Infect Dis. 2006;12(2):217. [DOI:10.3201/eid1202.050874] [PMID] [PMCID]
17. McCormick DW, Rowan SE, Pappert R, Yockey B, Dietrich EA, Petersen JM, et al., editors. Bartonella Seroreactivity Among Persons Experiencing Homelessness During an Outbreak of Bartonella quintana in Denver, Colorado, 20202020 2021: Oxford University Press US. [DOI:10.1093/ofid/ofab230] [PMID] [PMCID]
18. Koehler JE, Sanchez MA, Garrido CS, Whitfeld MJ, Chen FM, Berger TG, et al. Molecular epidemiology of Bartonella infections in patients with bacillary angiomatosis-peliosis. N Engl J Med. 1997;337(26):1876-83. [DOI:10.1056/NEJM199712253372603] [PMID]
19. Álvarez-Fernández A, Breitschwerdt EB, Solano-Gallego L. Bartonella infections in cats and dogs including zoonotic aspects. Parasites Vectors. 2018;11(1):1-21. [DOI:10.1186/s13071-018-3152-6] [PMID] [PMCID]
20. Spach H. Clinical features, diagnosis, and treatment of Bartonella quintana infections. Retrieved from https://www.uptodate.com/contents/clinical-features-diagnosis-and-treatment-of-bartonella-quintana-infections; 2019. [URL]
21. Fournier P-E, Mainardi J-L, Raoult D. Value of microimmunofluorescence for diagnosis and follow-up of Bartonella endocarditis. Clin Vaccine Immunol. 2002;9(4):795-801. [DOI:10.1128/CDLI.9.4.795-801.2002] [PMID] [PMCID]
22. Burzo ML, Antonelli M, Pecorini G, Favuzzi AMR, Landolfi R, Flex A. Fever of unknown origin and splenomegaly: a case report of blood culture negative endocarditis. Medicine. 2017;96(50). [DOI:10.1097/MD.0000000000009197] [PMID] [PMCID]
23. Mohammadian M, Butt S. Endocarditis caused by Bartonella Quintana, a rare case in the United States. IDCases. 2019;17:e00533. [DOI:10.1016/j.idcr.2019.e00533] [PMID] [PMCID]
24. Berri M, Souriau A, Crosby M, Crochet D, Lechopier P, Rodolakis A. Relationships between the shedding of Coxiella burnetii, clinical signs and serological responses of 34 sheep. Vet Rec. 2001;148(16):502-5. [DOI:10.1136/vr.148.16.502] [PMID]
25. Howe D, Heinzen RA. Coxiella burnetii inhabits a cholesterol‐rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol. 2006; 8(3):496-507. [DOI:10.1111/j.1462-5822.2005.00641.x] [PMID]
26. Cohen SN, Chang ACY, Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972;69(8):2110-4. [DOI:10.1073/pnas.69.8.2110] [PMID] [PMCID]
27. Oteo JA, Maggi R, Portillo A, Bradley J, García-Álvarez L, San-Martín M, et al. Prevalence of Bartonella spp. by culture, PCR and serology, in veterinary personnel from Spain. Parasites Vectors. 2017;10(1):1-9. [DOI:10.1186/s13071-017-2483-z] [PMID] [PMCID]
28. Pitassi LHU, de Paiva Diniz PPV, Scorpio DG, Drummond MR, Lania BG, Barjas-Castro ML, et al. Bartonella spp. bacteremia in blood donors from Campinas, Brazil. PLoS Negl Trop Dis. 2015;9(1):e0003467. [DOI:10.1371/journal.pntd.0003467] [PMID] [PMCID]
29. Brouqui P, Lascola B, Roux V, Raoult D. Chronic Bartonella quintana bacteremia in homeless patients. N Engl J Med. 1999;340(3):184-9. [DOI:10.1056/NEJM199901213400303] [PMID]
30. Picascia A, Pagliuca C, Sommese L, Colicchio R, Casamassimi A, Labonia F, et al. Seroprevalence of Bartonella henselae in patients awaiting heart transplant in Southern Italy. J Microbiol Immunol Infect. 2017;50(2):239-44. [DOI:10.1016/j.jmii.2015.05.001] [PMID]
31. Galluzzi L, Ceccarelli M, Diotallevi A, Menotta M, Magnani M. Real-time PCR applications for diagnosis of leishmaniasis. Parasites Vectors. 2018;11(1):1-13. [DOI:10.1186/s13071-018-2859-8] [PMID] [PMCID]
32. García JC, Núñez MJ, Castro B, Fernández JM, Portillo A, Oteo JA. Hepatosplenic cat scratch disease in immunocompetent adults: report of 3 cases and review of the literature. Medicine. 2014;93(17). [DOI:10.1097/MD.0000000000000089] [PMID] [PMCID]
33. Shapira L, Rasis M, Binsky Ehrenreich I, Maor Y, Katchman EA, Treves A, et al. Laboratory diagnosis of 37 cases of Bartonella endocarditis based on enzyme immunoassay and real-time PCR. J Clin Microbiol. 2021;59(6):e02217-20. [DOI:10.1128/JCM.02217-20] [PMID] [PMCID]
34. Shahbandeh M, Moghadam MT, Mirnejad R, Mirkalantari S, Mirzaei M. The efficacy of AgNO3 nanoparticles alone and conjugated with imipenem for combating extensively drug-resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2020;15:6905. [DOI:10.2147/IJN.S260520] [PMID] [PMCID]
35. Shahbandeh M, Eghdami A, Moosazadeh Moghaddam M, Jalali Nadoushan M, Salimi A, Fasihi-Ramandi M, et al. Conjugation of imipenem to silver nanoparticles for enhancement of its antibacterial activity against multidrug-resistant isolates of Pseudomonas aeruginosa. J Biosci. 2021;46(1):1-19. [DOI:10.1007/s12038-021-00143-9]
36. Soleimani M, Morovvati A, Hosseini SZ, Zolfaghari MR. Design of an improved multiplex PCR method for diagnosis of enterohaemoraghic E. coli and enteropathogic E. coli pathotypes. Gastroenterol Hepatol Bed Bench. 2012;5(2): 106.
37. Vermeulen MJ, Diederen BMW, Verbakel H, Peeters MF. Low sensitivity of Bartonella henselae PCR in serum samples of patients with cat-scratch disease lymphadenitis. J Med Microbiol. 2008;57(8):1049-50. [DOI:10.1099/jmm.0.2008/001024-0] [PMID]
38. Arvand M, Schäd SG. Isolation of Bartonella henselae DNA from the peripheral blood of a patient with cat scratch disease up to 4 months after the cat scratch injury. J Clin Microbiol. 2006;44(6):2288-90. [DOI:10.1128/JCM.00239-06] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc