Articles In Press                   Back to the articles list | Back to browse issues page

XML Print


Iranian Research Organization for Science and Technology (IROST) , mahboobeh_akbarizare@yahoo.com
Abstract:   (273 Views)
Background and Aim: Photodynamic inactivation (PDI) is a new strategy for eliminating pathogenic microorganisms, especially in infectious wounds. PDI occurs using light in combination with a photosensitizer. A new approach in PDI applies natural compounds as a photosensitizer. This study aimed to introduce brewed saffron (Crocus sativus) as a new natural photosensitizer in combination with blue light to induce a phototoxic reaction in Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) strains.
Materials and Methods: Isolated and standard S. aureus and E. coli strains and a Candida albicans standard strain were used for PDI. Various final concentrations (2.5-10 mg/mL) of brewed saffron as a photosensitizer was employed with 15 minutes of incubation. A blue LED with 5 minutes of illumination was applied as a light source. Control and treatments were compared using the colony count method.
Results:  Using the saffron extract in combination with blue LED could induce a phototoxic reaction in Gram-negative bacteria similar to Gram-positive bacteria. After PDI, there was no significant difference between Gram-positive and Gram-negative strains in terms of cellular death. The highest phototoxic reaction in all bacteria was observed at 10 mg/mL of the final saffron concentration combined with blue light by 0.65-0.75log10 (CFU/mL) cellular death. At the concentration of 2.5 mg/mL of the extract (the lowest concentration), the highest phototoxic reaction was found in the S. aureus isolated strain by a 0.65log10 (CFU/mL) reduction.
Conclusion:  The brewed saffron combined with blue light induces a sub-lethal phototoxic reaction in bacteria. Accordingly, it can be suggested as a natural source for new photosensitizers.
Article number: 12
     
Type of Study: Original Research Article | Subject: Antimicrobial Substances
Received: 2021/12/22 | Accepted: 2022/05/17 | ePublished: 2022/09/9

References
1. Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. Hum Microbiome J. 2019;11(100052):1-10. [DOI:10.1016/j.humic.2019.01.001]
2. Soleymani N, Sattari M, Sepehriseresht S, Daneshmandi S, Derakhshan. Evaluation of reciprocal pharmaceutical effects and antibacterial activity of Bunium persicum essential oil against some Gram positive and Gram negative bacteria. Iran J Med Microbiol. 2010;4(1):26-34.
3. Mai B, Gao Y, Li M, Wang X, Zhang K, Liu Q, et al. Photodynamic antimicrobial chemotherapy for Staphylococcus aureus and multidrug-resistant bacterial burn infection in vitro and in vivo. Int J Nanomedicine. 2017;12:5915-31. [DOI:10.2147/IJN.S138185] [PMID] [PMCID]
4. Negut I, Grumezescu V, Grumezescu AM. Treatment Strategies for Infected Wounds. Molecules. 2018;17(2):1-4. [DOI:10.3390/molecules23092392] [PMID] [PMCID]
5. Bowler PG, Duerden BI, Armstrong DG. Wound Microbiology and Associated Approaches to Wound Management. Clin Microbiol Rev. 2001;14(2):244-69. [DOI:10.1128/CMR.14.2.244-269.2001] [PMID] [PMCID]
6. Akbarizare M. GC-MS Analysis and Antimicrobial Activity of an Iranian Traditional Medicinal Smoke (Anbarnasara). J Med Microbiol Infect Dis. 2021;9(3):148-55. [DOI:10.52547/JoMMID.9.3.148]
7. Aljarrah K, M-Ali AL-Akhras, Al-Khalili DJ, Ababneh Z. The feasibility of using saffron to reduce the photosensitivity reaction of selected photosensitizers using Red Blood Cells and Staphylococcus Aureus Bacteria as targets. Photodiagnosis Photodyn Ther. 2020;29(101590):1- 21. [DOI:10.1016/j.pdpdt.2019.101590] [PMID]
8. Kashef N, Akbarizarea M, Kamrava SK. Effect of sub-lethal photodynamic inactivation on the antibiotic susceptibility and biofilm formation of clinical Staphylococcus aureus isolates. Photodiagnosis Photodyn Ther. 2013;10(4):368- 73. [DOI:10.1016/j.pdpdt.2013.02.005] [PMID]
9. Gonçalves MLL, Mota ACCd, Deana AM, Cavalcante LAdS, Horliana ACRT, Pavani C, et al. Antimicrobial photodynamic therapy with Bixa orellana extract and blue LED in the reduction of halitosis-A randomized, controlled clinical trial. Photodiagnosis Photodyn Ther. 2020;30(101751):1- 7. [DOI:10.1016/j.pdpdt.2020.101751] [PMID]
10. Nesi-Reis V, Lera-Nonose DSSL, Oyama J, Silva-Lalucci MPP, Demarchi IG, Aristides SMA, et al. Contribution of photodynamic therapy in wound healing: A systematic review. Photodiagnosis Photodyn Ther. 2018;21:294-305. [DOI:10.1016/j.pdpdt.2017.12.015] [PMID]
11. Habibi M, Gheibi N, Nooroozi J, Pour TN, Hashemi HJ, Khosroshahi N, et al. Effects of low-power laser irradiation on the growth of staphylococcus aureus with and without the presence of caffeic acid. Iran J Med Microbiol. 2011;5(1):34-42.
12. Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-64. [DOI:10.1042/BJ20150942] [PMID] [PMCID]
13. Sperandio FF, Huang Y-Y, Hamblin MR. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria. Recent Pat Antiinfect Drug Discov. 2013;8(2):108-20. [DOI:10.2174/1574891X113089990012] [PMID] [PMCID]
14. Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A. Photosensitizers in antibacterial photodynamic therapy: an overview. Laser Ther. 2018;27(4):293- 302. [DOI:10.5978/islsm.27_18-RA-01] [PMID] [PMCID]
15. Martí M, Diretto G, Aragones V, Frusciante S, Ahrazem O, Gomez-Gomez L, et al. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system Metab Eng. 2020;2020(61):238- 50. [DOI:10.1016/j.ymben.2020.06.009] [PMID]
16. Javadi B, Sahebkar A, Emami SA. A Survey on Saffron in Major Islamic Traditional Medicine Books. Iran J Basic Med Sci. 2013;16(1):1- 11.
17. Samarghandian S, Boskabady MH, Davoodi S. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Pharmacogn Mag. 2010;6(24):309- 14 [DOI:10.4103/0973-1296.71799] [PMID] [PMCID]
18. Soheilipur K, Khazdair MR, Moezi SA, Mahmoudirad G. Comparing the effects of saffron, lippia, and saffron-lippia combination on anxiety among candidates for coronary angiography. AJP. 2021;11(5):515- 26.
19. Fard NR, Mahdipour HH, Hedayati MH, Esmaili M. Evaluation of cytotoxic effects of aqueous - methanolic saffron extract on Vero, HeLa and Hep2 cell lines using MTT assay method. Iran J Med Microbiol. 2011;4(4):59-65.
20. Escribanoa J, Alonsob G-L, Coca-Pradosc M, Fernhdeza J-A. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Lett. 1995;100(1996):23-30. [DOI:10.1016/0304-3835(95)04067-6]
21. Ghaffari S, Roshanravan N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed Pharmaco ther. 2019;109:21-7. [DOI:10.1016/j.biopha.2018.10.031] [PMID]
22. Mykhailenko O, Petrikaitė V, Korinek M, El-Shazly M, Chen B-H, Yen C-H, et al. Bio-guided bioactive profiling and HPLCDAD fingerprinting of Ukrainian saffron (Crocus sativus stigmas): moving from correlation toward causation. BMC Complement Med Ther. 2021;21(203):1-15. [DOI:10.1186/s12906-021-03374-3] [PMID] [PMCID]
23. Amanpour A, Kelebek H, Selli S. GLC/HPLC Methods for Saffron (L.). InBioactive Molecules in Food 2019 (pp. 1987-2035). Springer, Cham. [DOI:10.1007/978-3-319-78030-6_42]
24. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed. 2015;5(5): 376-91.
25. Khorasany AR, Hosseinzadeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci. 2016;19(5):455- 69.
26. Noraddin Hosseinpour A, Ghorban AN, Govani G, Gholam AR, Ahad Y. Identification of Apo- Carotenoids' Crocin and Crocetin Isomers in Saffron Crude Extracts by HPLC Coupled to Atmospheric Pressure Chemical Ionization and High Resolution Orbitrap Mass Spectrometry. Journal of Saffron Agronomy and Technology. 2016;1(4):291-9.
27. Khorasani G, Hosseinimehr SJ, Zamani P, Ghasemi M, Ahmadi A. The Effect of Saffron (Crocus Sativus) Extract for Healing of Second-degree Burn Wounds in Rats. Keio J Med. 2008;57(4):190-5. [DOI:10.2302/kjm.57.190] [PMID]
28. Sun Y, Ogawa R, Xiao B-H, Feng Y-X, Wu Y, Chen L-H, et al. Antimicrobial photodynamic therapy in skin wound healing: A systematic review of animal studies. Int Wound J. 2020;17:285-99. [DOI:10.1111/iwj.13269] [PMID] [PMCID]
29. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn Wound Infections. Clin Microbiol Rev. 2006;19(2):403- 34. [DOI:10.1128/CMR.19.2.403-434.2006] [PMID] [PMCID]
30. Khashei R, Navabi Z, Mohebi S, Samadi N. Antibiotic Resistance Among Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii Isolates Obtained From Shiraz Nemazi Hospital ICU Wards. Iran J Med Microbiol. 2018;12(4):294-300. [DOI:10.30699/ijmm.12.4.294]
31. García I, Ballesta S, Gilaberte Y, Rezusta A, Pascual Á. Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 2015;10(3):347-56. doi: 10.2217/fmb.14.114. [DOI:10.2217/fmb.14.114] [PMID]
32. Parvathy KS, Negi PS, Srinivas P. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside. Food Chem. 2009;115(1):265- 71. [DOI:10.1016/j.foodchem.2008.12.036]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc