year 16, Issue 2 (March - April 2022)                   Iran J Med Microbiol 2022, 16(2): 141-147 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmadi Z, Noormohammadi Z, Ranjbar R, Behzadi P. Prevalence of Tetracycline Resistance Genes tet (A, B, C, 39) in Klebsiella pneumoniae Isolated from Tehran, Iran. Iran J Med Microbiol 2022; 16 (2) :141-147
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran ,
3- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
Abstract:   (3238 Views)

Background and Objective: Klebsiella pneumoniae is one of the three pathogens that has become a global disease control and treatment problem due to its resistance to common antibiotics. For this reason, it is crucial to study the genes that cause antibiotic resistance in it. Therefore, the aim of this study was to investigate the phenotypic and genotypic frequency of tetracycline resistance in clinical isolates of K. pneumoniae in Tehran, Iran.
Materials and Methods: In this study, 100 isolates of K. pneumoniae isolated from clinical samples (urine) during 2018-2019 were studied. In addition to microbial and biochemical phenotypic tests, genotypic tests were conducted to determine the frequency of antibiotic resistance genes tet (A, B, C, 39).
Results: Out of 100 isolates of K. pneumoniae, 49 isolates were resistant to tetracyclines. The results of multiplex PCR showed that 31 samples were positive for tetA gene, 8 isolates for tetB gene, 21 samples for tetC and, and 8 isolates for tet39. None of the isolates were positive for all four tetracycline genes.
Conclusion: The results of this study showed that the isolates were positive for at least one gene and at most 2 tetracycline resistance genes. The tetA gene showed the highest frequency and the lowest frequency was demonstrated by tetB. The highest binary combination of genes was tetA-tetC, and the lowest was tetA-tet39.

Full-Text [PDF 965 kb]   (822 Downloads) |   |   Full-Text (HTML)  (1092 Views)  
Type of Study: Original Research Article | Subject: Antibiotic Resistance
Received: 2021/08/26 | Accepted: 2021/12/22 | ePublished: 2022/02/10

1. Marr CM, Russo TA. Hypervirulent Klebsiella pneumoniae: a new public health threat. Expert Rev Anti Infect Ther. 2019;17(2):71-3. [DOI:10.1080/14787210.2019.1555470] [PMID] [PMCID]
2. Fatehi T, Anvari M, Ranji N. Investigating Antibiotic Resistance and The Frequency of SHVand TEM Extended Expecterum Beta Lactamase Genes in klebsiella penumoniea Isolated from Blood Samples of Neonates Admitted to Some Health Centers in Rasht. Iran J Med Microbiol. 2017;11(4):57-63.
3. Masoumi Zavaryani S, Mirnejad R, Piranfar V, Moosazadeh Moghaddam M, Sajjadi N, Saeedi S. Assessment of Susceptibility to Five Common Antibiotics and Their Resistance Pattern in Clinical Enterococcus Isolates. Iran J Pathol. 2020;15(2):96-105. [DOI:10.30699/ijp.2020.114009.2236] [PMID] [PMCID]
4. Ranjbar R, Afshar D. Evaluation of (GTG) 5-PCR for Genotyping of Klebsiella pneumonia Strains Isolated from Patients with Urinary Tract Infections. Iran J Public Health. 2019;48(10):1879-84. [DOI:10.18502/ijph.v48i10.3496]
5. Tian L, Sun Z, Zhang Z. Antimicrobial resistance of pathogens causing nosocomial bloodstream infection in Hubei Province, China, from 2014 to 2016: a multicenter retrospective study. BMC Public Health. 2018;18(1):1121. [DOI:10.1186/s12889-018-6013-5] [PMID] [PMCID]
6. Zhan L, Wang S, Guo Y, Jin Y, Duan J, Hao Z, et al. Outbreak by Hypermucoviscous Klebsiella pneumoniae ST11 Isolates with Carbapenem Resistance in a Tertiary Hospital in China. Front Cell Infect Microbiol. 2017;7:182. [DOI:10.3389/fcimb.2017.00182] [PMID] [PMCID]
7. Dalir A, Razavi S, Talebi M, Masjedian Jazi F, Zahedi Bialvaei A, Mirshekar M, et al. Antibiotic Susceptibility Pattern and Distribution of Virulence Factors Among Klebsiella pneumoniae Isolated from Healthy Volunteers. Iran J Med Microbiol. 2021;15(6):676-83.
8. Ranjbar R, Memariani H, Sorouri R, Memariani M. Distribution of virulence genes and genotyping of CTX-M-15-producing Klebsiella pneumoniae isolated from patients with community-acquired urinary tract infection (CA-UTI). Microb Pathog. 2016;100:244-9. [DOI:10.1016/j.micpath.2016.10.002] [PMID]
9. Bina M, Pournajaf A, Mirkalantari S, Talebi M, Irajian G. Detection of the Klebsiella pneumoniae carbapenemase (KPC) in K. pneumoniae Isolated from the Clinical Samples by the Phenotypic and Genotypic Methods. Iran J Pathol. 2015;10(3):199-205.
10. Lu MC, Chen YT, Chiang MK, Wang YC, Hsiao PY, Huang YJ, et al. Colibactin Contributes to the Hypervirulence of pks(+) K1 CC23 Klebsiella pneumoniae in Mouse Meningitis Infections. Front Cell Infect Microbiol. 2017;7(103):103. [DOI:10.3389/fcimb.2017.00103]
11. Habibinava F, Zolfaghari MR, Sabouri Shahrbabak S, Zargar M, Soleimani M. Isolation of Lytic Bacteriophages from Sewage Samples against MDR-Klebsiella pneumoniae and MDR-Enterobacter aerogenes: A potential tool for medical purposes. Iran J Med Microbiol. 2021;15(1):46-66. [DOI:10.30699/ijmm.15.1.46]
12. Roshdi Maleki M, Taghinejad J. Prevalence of Extended-spectrum Beta-lactamases (ESBL) Types blaTEM and blaSHV in Klebsiella pneumoniae Strains Isolated from Clinical Samples by PCR in Miandoab, West Azerbaijan. Iran J Med Microbiol. 2021;15(4):458-64. [DOI:10.30699/ijmm.15.4.458]
13. Ahmed T, Islam T, Sultana Soha R, Akter E. Correlation of the Pathogenic Bacteria Isolated from Sputum Samples with Age, Sex, Seasonal Variation and Determination of Their Antibiotic Resistance Pattern. Iran J Med Microbiol. 2021;15(6):700-7.
14. Golan Y. Empiric therapy for hospital-acquired, Gram-negative complicated intra-abdominal infection and complicated urinary tract infections: a systematic literature review of current and emerging treatment options. BMC Infect Dis. 2015;15:313. [DOI:10.1186/s12879-015-1054-1] [PMID] [PMCID]
15. Paulsen IT, Brown MH, Skurray RA. Proton-dependent multidrug efflux systems. Microbiol Rev. 1996;60(4):575-608. [DOI:10.1128/mr.60.4.575-608.1996] [PMID] [PMCID]
16. Kim S, Jensen JN, Aga DS, Weber AS. Tetracycline as a selector for resistant bacteria in activated sludge. Chemosphere. 2007;66(9):1643-51. [DOI:10.1016/j.chemosphere.2006.07.066] [PMID]
17. Garcia PG, Silva VL, Diniz CG. Occurrence and antimicrobial drug susceptibility patterns of commensal and diarrheagenic Escherichia coli in fecal microbiota from children with and without acute diarrhea. J Microbiol. 2011;49(1):46-52. [DOI:10.1007/s12275-011-0172-8] [PMID]
18. Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother. 1996;40(1):1-5. [DOI:10.1128/AAC.40.1.1] [PMID]
19. Osei Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J Appl Microbiol. 2016;121(3):601-17. [DOI:10.1111/jam.13169] [PMID]
20. Patterson AJ, Rincon MT, Flint HJ, Scott KP. Mosaic tetracycline resistance genes are widespread in human and animal fecal samples. Antimicrob Agents Chemother. 2007;51(3):1115-8. [DOI:10.1128/AAC.00725-06] [PMID] [PMCID]
21. Rezashateri M, Ahrabi M, Salehi M. Molecular Analysis of the Presence of pvl, spa, and mecA Genes and Their Correlation with a Range of Antibiotics in Staphylococcus aureus Collected from Burn Patients. Iran J Med Microbiol. 2021;15(6):625-37.
22. Ghasemnejad A, Doudi M, Amirmozafari N. Evaluation of Modified Hodge Test as a Non-molecular Assay for Accurate Detection of KPC-producing Klebsiella pneumoniae. Pol J Microbiol. 2018;67(3):291-5. [DOI:10.21307/pjm-2018-034] [PMID] [PMCID]
23. Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.
24. Ghasemnejad A, Doudi M, Amirmozafari N. The role of the bla KPC gene in antimicrobial resistance of Klebsiella pneumoniae. Iran J Microbiol. 2019;11(4):288-93. [DOI:10.18502/ijm.v11i4.1465] [PMID] [PMCID]
25. Liu Y, Liu C, Zheng W, Zhang X, Yu J, Gao Q, et al. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. Int J Food Microbiol. 2008;125(3):230-5. [DOI:10.1016/j.ijfoodmicro.2008.03.005] [PMID]
26. Sengelov G, Agerso Y, Halling-Sorensen B, Baloda SB, Andersen JS, Jensen LB. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environ Int. 2003;28(7):587-95. [DOI:10.1016/S0160-4120(02)00084-3]
27. Henriot CP, Martak D, Cuenot Q, Loup C, Masclaux H, Gillet F, et al. Occurrence and ecological determinants of the contamination of floodplain wetlands with Klebsiella pneumoniae and pathogenic or antibiotic-resistant Escherichia coli. FEMS Microbiol Ecol. 2019;95(8). [DOI:10.1093/femsec/fiz097] [PMID] [PMCID]
28. Chanbari M, Mirnejad R, Babapour E. Evaluation of Resistance to Fluoroquinolones and Its Relationship whit parC Gene Mutation in Klebsiella pneumoniae Clinical Isolates. Iran J Med Microbiol. 2020;14(3):270-89. [DOI:10.30699/ijmm.14.3.270]
29. Ribeiro PC, Monteiro AS, Marques SG, Monteiro SG, Monteiro-Neto V, Coqueiro MM, et al. Phenotypic and molecular detection of the bla KPC gene in clinical isolates from inpatients at hospitals in Sao Luis, MA, Brazil. BMC Infect Dis. 2016;16(1):737. [DOI:10.1186/s12879-016-2072-3] [PMID] [PMCID]
30. Taitt CR, Leski TA, Erwin DP, Odundo EA, Kipkemoi NC, Ndonye JN, et al. Antimicrobial resistance of Klebsiella pneumoniae stool isolates circulating in Kenya. PLoS One. 2017;12(6):e0178880. [DOI:10.1371/journal.pone.0178880] [PMID] [PMCID]
31. Heidary M, Nasiri MJ, Dabiri H, Tarashi S. Prevalence of Drug-resistant Klebsiella pneumoniae in Iran: A Review Article. Iran J Public Health. 2018;47(3):317-26.
32. Bokaeian M, Saeidi S, Shahi Z, Kadaei V. tetA and tetB Genes in Klebsiella Pneumoniae Isolated From Clinical Samples. Gene, Cell and Tissue. 2014;1(2):e18152. [DOI:10.17795/gct-18152]
33. Kashefieh M, Hosainzadegan H, Baghbanijavid S, Ghotaslou R. The Molecular Epidemiology of Resistance to Antibiotics among Klebsiella pneumoniae Isolates in Azerbaijan, Iran. J Trop Med. 2021;2021:9195184. [DOI:10.1155/2021/9195184] [PMID] [PMCID]
34. Adelowo OO, Fagade OE. The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, Southwestern Nigeria. Lett Appl Microbiol. 2009;48(2):167-72. [DOI:10.1111/j.1472-765X.2008.02523.x] [PMID]
35. Bauer-Garland J, Frye JG, Gray JT, Berrang ME, Harrison MA, Fedorka-Cray PJ. Transmission of Salmonella enterica serotype Typhimurium in poultry with and without antimicrobial selective pressure. J Appl Microbiol. 2006;101(6):1301-8. [DOI:10.1111/j.1365-2672.2006.03036.x] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc