year 14, Issue 6 (November - December 2020)                   Iran J Med Microbiol 2020, 14(6): 596-611 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alvandi H, Hatamian-Zarmi A, Ebrahimi Hosseinzadeh B, Mokhtari-Hosseini Z. Optimization of Production Conditions for Bioactive Polysaccharides from Fomes fomentarius and Investigation of Antibacterial and Antitumor Activities. Iran J Med Microbiol 2020; 14 (6) :596-611
1- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
2- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran ,
3- Department of Chemical Engineering, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
Abstract:   (5527 Views)
 Background:  One of the medicinal fungi that has been used in traditional medicine for a long time is the Basidiomycete fungus Fomes fomentarius, which is widely distributed in Iran. Polysaccharides as one of the metabolites of this fungus have anti-inflammatory, anti-diabetic, antibacterial, antioxidant, and anti-cancer properties.
 Materials & Methods:   Optimization of independent variables of MgSO4.7H2O concentration, initial pH, yeast extract, and inoculum percentage to increase biomass and polysaccharide production of F. fomentarius was investigated using the Taguchi method. Then, the biological properties of the produced polysaccharide including antibacterial activity was investigated by bacterial colony counting method, antioxidant activity using DPPH free radical, and antiproliferative effect on 5 cancer cell lines MKN-45, AGS, A549, KYSE-30 and 5637 using MTS test.
Results:   The concentration of MgSO4.7H2O and initial pH had a significant effect (P<0.05) on the production of F. fomentarius polysaccharide and in optimal conditions polysaccharide production reaches 5.410 g/L. The polysaccharide of this fungus inhibits the growth of Staphylococcus aureus and Escherichia coli bacteria by 50% and 25%, respectively. The antioxidant activity of this polysaccharide in the DPPH test is 16.11%. The antiproliferative effect of this polysaccharide on cancer cells is different (KYSE-30> A549 5637> AGS> MKN-45). This effect increases with increasing concentration. In KYSE-30 cell line treatment with 200 g/mL polysaccharide, cell viability reaches 40% after 72 hours.
Conclusion:   Optimizing the culture medium of the medicinal fungus Fomes fomentarius increases the production of polysaccharides up to 5.410 g/L. Optimization increases the biological activity of polysaccharides. Antibacterial activity against Staphylococcus aureus and Escherichia coli is 50% and 25%, respectively. The antioxidant activity of polysaccharides is 16.11% and the viability of KYSE-30 cancer cells reaches 40% after 72 hours.
Full-Text [PDF 945 kb]   (1597 Downloads) |   |   Full-Text (HTML)  (1440 Views)  
Type of Study: Original Research Article | Subject: Microbial Biotechnology
Received: 2020/08/27 | Accepted: 2020/10/5 | ePublished: 2020/10/27

1. Cui J, Chisti Y. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnol. Adv. 2003; 21(2):109-122. [DOI:10.1016/S0734-9750(03)00002-8]
2. Asefshayan MR. Medicenal fungi of Iran, 247, Tehran: Iranshenasi; 2016.
3. Grienke U, Zöll M, Peintner U, M.Rollinger J. European medicinal polypores - A modern view on traditional uses. J. Ethnopharmacol. 2014; 154(3):564-583. [DOI:10.1016/j.jep.2014.04.030] [PMID]
4. Chen W, Zhao Z, Li YQ. Simultaneous increase of mycelial biomass and intracellular polysaccharide from Fomes fomentarius and its biological function of gastric cancer intervention. Carbohydr. Polym. 2011; 85(2):369-375. [DOI:10.1016/j.carbpol.2011.02.035]
5. Kim SH, Jakhar R, Kang SH. Apoptotic properties of polysaccharide isolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J Biol Sci. 2015; 22(4):484-490. [DOI:10.1016/j.sjbs.2014.11.022] [PMID] [PMCID]
6. R-Hernandez L, CG-Franco A, S-Parra JM, M-Dominguez F. Review of agricultural and medicinal applications of basidiomycete mushrooms. Tecnociencia. 2008; 1(2):95-107.
7. Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech, 2012; 2(1):1-15. [DOI:10.1007/s13205-011-0036-2] [PMID] [PMCID]
8. Zang Y, Xiong J, Zhai WZ, Cao L, Zhang SP, Tang Y, Wanga J, Su JJ, Yang GX, Zhao Y, Fan H, Xia G, Wang CG, Hua JF. Fomentarols A-D, sterols from the polypore macrofungus Fomes fomentarius. Phytochemistry. 2013; 92:137-145. [DOI:10.1016/j.phytochem.2013.05.003] [PMID]
9. Krupodorova T, Rybalko S, Barshteyn V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin. 2014; 29(5):284-290. [DOI:10.1007/s12250-014-3486-y] [PMID]
10. Kolundzic M, Grozdanic ND, Dodevska M, Milenkovi'c M, Sisto F, Miani A, Farronato G, Kundakovi'ca T. Antibacterial and cytotoxic activities of wild mushroom Fomes fomentarius (L.) Fr.. Polyporaceae. Ind Crops Prod. 2016; 79:110-115. [DOI:10.1016/j.indcrop.2015.10.030]
11. Chen W, Zhao Z, Chen SF, Li YQ. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour. Technol. 2008; 99(8):3187-3194. [DOI:10.1016/j.biortech.2007.05.049] [PMID]
12. Neifar M, Jaouani A, Ayari A, Abid O, B-Salem H, Boudabous A, Najar T, E-Ghorbel R. Improving the nutritive value of Olive Cake by solid state cultivation of the medicinal mushroom Fomes fomentarius. Chemosphere. 2013; 91(1):110-114. [DOI:10.1016/j.chemosphere.2012.12.015] [PMID]
13. Houng JY, Hsu HF, Liu YH, Wu JY. Applying the Taguchi robust design to the optimization of the asymmetric reduction of ethyl4-chloro acetoacetate by bakers' yeast. J. Biotechnol. 2003; 100, 239-250. [DOI:10.1016/S0168-1656(02)00179-7]
14. Andreazza NL, De Lourenço CC, Stefanello MÉ, Atvars TD, Salvador MJ. Photodynamic antimicrobial effects of bis-indole alkaloid indigo from Indigofera truxillensis Kunth (Leguminosae). Lasers Med Sci. 2015; 30(4):1315-1324. [DOI:10.1007/s10103-015-1735-4] [PMID]
15. Arab-Bafrani Z, Shahbazi-Gahrouei D, Abbasian M, Fesharaki M. Multiple MTS Assay as the Alternative Method to Determine Survival Fraction of the Irradiated HT-29 Colon Cancer Cells. J Med Signals Sens. 2016; 6(2): 112-116. [DOI:10.4103/2228-7477.181040] [PMID] [PMCID]
16. Qinnghe C, Xiaoyu Y, Tiangui N, Cheng J, Qiugang M. The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem. 2004; 39(11): 1561-1566. [DOI:10.1016/S0032-9592(03)00290-5]
17. Okwudili U. Role of magnesium ions on yeast performance during very high gravity fermentation. J. Brew. Distilling. 2013; 4:19-45. [DOI:10.5897/JBD2013.0041]
18. M.R.Rees E, G.Stewart G. The effects of increased magnesium and calcium concentrations on yeast fermentation performance in high gravity worts. J. Inst. Brew. 1997; 103: 287-291. [DOI:10.1002/j.2050-0416.1997.tb00958.x]
19. Arora D S, Chandra P. Assay of antioxidant potential of two Aspergillus isolates by different methods under various physio-chemical conditions. Braz J Microbiol. 2010; 41(3), 765-777. [DOI:10.1590/S1517-83822010000300029] [PMID] [PMCID]
20. Bhattacharyya PN, Jha DK. Optimization of cultural conditions affecting growth and improved bioactive metabolite production by a subsurface Aspergillus strain tsf 146. Int J Appl Biol Pharm. 2011. 2(4): 133-143.
21. Prasad L, Kundu A, Bahukhandi D. Comparative analysis of volatile fractions of Fomes fomentarius and F.rhabarbarinus. Indian Phytopathol. 2018; 71: 25-31. [DOI:10.1007/s42360-018-0003-5]
22. Huang QL, Siua KC, Wanga WQ, Cheunga YC, Wu JY. Fractionation, characterization and antioxidant activity of exopolysaccharides from fermentation broth of a Cordyceps sinensis fungus. Process Biochem. 2013; 48(2):380-386. [DOI:10.1016/j.procbio.2013.01.001]
23. Miao L, F.N.Kwong T, Qian PY. Effect of culture conditions on mycelial growth, antibacterialactivity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl Microbiol Biotechnol. 2006; 72: 1063-1073. [DOI:10.1007/s00253-006-0376-8] [PMID]
24. R. Perron N, L. Brumaghim J. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009; 53:75-100. [DOI:10.1007/s12013-009-9043-x] [PMID]
25. M.Zhang, S.W.Cui, P.C.K.Cheung, Q.Wang. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Tech. 2007; 18(1), 4-19. [DOI:10.1016/j.tifs.2006.07.013]
26. D-Petrova R, Z-Reznick A, P-Wasser S, M-Denchev C, Nevo E, Mahajna J. Fungal metabolites modulating NF-κB activity: An approach to cancer therapy and chemoprevention (Review). Oncology reports. 2008; 19(2):299-308. [DOI:10.3892/or.19.2.299] [PMID]
27. Queiroz EA, Fortes ZB, da Cunha MA, Barbosa AM, Khaper N, Dekker RF. Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a. Int J Biochem Cell Biol. 2015; 67:14-24. [DOI:10.1016/j.biocel.2015.08.003] [PMID]
28. Choe JH, Yi YJ, Lee MS, Seo DW, Yun BS, Lee SM. 2015. Methyl 9-Oxo-(10E,12E)-octadecadienoate isolated from Fomes fomentarius attenuates lipopolysaccharide-induced inflammatory response by blocking phosphorylation of STAT3 in murine macrophages. Mycobiology. 2015; 43(3): 319-26. [DOI:10.5941/MYCO.2015.43.3.319] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc