1. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges. Int J Antimicrob Agents. 2020; 55(3):105924. [
DOI:10.1016/j.ijantimicag.2020.105924] [
PMID] [
PMCID]
2. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020;395(10224):565-74. [
DOI:10.1016/S0140-6736(20)30251-8] [
PMID]
3. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-13. [
DOI:10.1016/S0140-6736(20)30211-7] [
PMID]
4. Vasei M, Jafari E, Falah Azad V, Safavi M, Sotoudeh M. Molecular Diagnosis of COVID-19; Biosafety and Pre-analytical Recommendations. Iran J Pathol. 2023;18(3):244-56. [
DOI:10.30699/ijp.2023.1988405.3061]
5. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus. 2020; 12(3):e7355. [
DOI:10.7759/cureus.7355]
6. Khorasani Esmaili P, Dabiri S, Movahedinia S, Shojaeepour S, Bagheri F, Ranjbar H, et al. Evaluation of Laboratory Findings of Patients with Coronavirus Disease 2019 in Kerman, Iran. Iran J Pathol, 2023;18(3):347-55. [
DOI:10.30699/ijp.2023.1971332.3031]
7. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). Statpearls [internet]: StatPearls Publishing; 2020.
8. Wang HY, Li XL, Yan ZR, Sun XP, Han J, Zhang BW. Potential neurological symptoms of COVID-19. Therap Adv Neurol Disorder. 2020;13: 1756286420917830. [
DOI:10.1177/1756286420917830] [
PMID] [
PMCID]
9. Rezabeigi-Davarani E, Bokaie S, Mashayekhi V, Sharifi L, Faryabi R, Alian Samakkhah S, et al. Epidemiological and clinical characteristics of COVID-19 patients studied by Jiroft University of Medical Sciences: Southeast of Iran. J Adv Med Biomed Res. 2021;29(136):302-9. [
DOI:10.30699/jambs.29.136.302]
10. Mahmoodpoor A, Hosseini M, Soltani-Zangbar S, Sanaie S, Aghebati-Maleki L, Saghaleini SH, et a. Reduction and exhausted features of T lymphocytes under serological changes, and prognostic factors in COVID-19 progression. Mol Immunol. 2021;138:121-7. [
DOI:10.1016/j.molimm.2021.06.001] [
PMID] [
PMCID]
11. Aghbash PS, Eslami N, Shamekh A, Entezari-Maleki T, Baghi HB. SARS-CoV-2 infection: The role of PD-1/PD-L1 and CTLA-4 axis. Life Sci. 2021; 270:119124. [
DOI:10.1016/j.lfs.2021.119124] [
PMID] [
PMCID]
12. Garg K, Talwar D, Mahajan SN, Karim S, Prajapati K, Patel S, et al. A review on COVID-19 vaccinations. Biomed Biotechnol Res J. 2022;6(1): 50-3. [
DOI:10.4103/bbrj.bbrj_280_21]
13. Simões RS, Rodríguez-Lázaro D. Classical and next-generation vaccine platforms to SARS-CoV-2: biotechnological strategies and genomic variants. Int J Environ Res Public Health. 2022; 19(4):2392. [
DOI:10.3390/ijerph19042392] [
PMID] [
PMCID]
14. Majed SO. Comparison of Antibody Levels Produced by Pfizer, AstraZeneca, and Sinopharm Vaccination in COVID-19 Patients in Erbil City-Iraq. Cell Mol Biol. 2023;69(3):103-12. [
DOI:10.14715/cmb/2023.69.3.14] [
PMID]
15. Kollewe J. From Pfizer to Moderna: who's making billions from Covid-19 vaccines. The Guardian. 2021;6.
16. Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597(7876):318-24. [
DOI:10.1038/d41586-021-02483-w] [
PMID]
17. Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: The COVID-19 case. J Control Release. 2021;333:511-20. [
DOI:10.1016/j.jconrel.2021.03.043] [
PMID] [
PMCID]
18. Zeng C, Zhang C, Walker PG, Dong Y. Formulation and delivery technologies for mRNA vaccines. InmRNA Vaccines. 2020. (pp. 71-110). Cham: Springer International Publishing. [
DOI:10.1007/82_2020_217] [
PMID] [
PMCID]
19. Wadhwa A, Aljabbari A, Lokras A, Foged C, Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020; 12(2):102. [
DOI:10.3390/pharmaceutics12020102] [
PMID] [
PMCID]
20. Hassan RT, Mohammed SH. Evaluation of immunoglobulin G level among subjects vaccinated with different types of COVID-19 vaccines in the karbala population, Iraq. Biomed Biotechnol Res J. 2022;6(3):466-471. [
DOI:10.4103/bbrj.bbrj_213_22]
21. Sannathimmappa MB, Nambiar V, Aravindakshan R, Baig MF, Hassan AK, Al-Balushi MS. Effectiveness and adverse effects of astrazeneca and pfizer COVID-19 vaccines among medical students in Oman: A comparative study. Biomed Biotechnol Res J. 2023;7(1):101-5. [
DOI:10.4103/bbrj.bbrj_9_23]
22. Kiani J, Khadempar S, Hajilooi M, Rezaei H, Keshavarzi F, Solgi G. Cytotoxic T lymphocyte antigen-4 gene variants in type 2 diabetic patients with or without neuropathy. Iran J Allergy Asthma Immunol. 2016;220-8.
23. Batista-Duharte A, Hassouneh F, Alvarez-Heredia P, Pera A, Solana R. Immune checkpoint inhibitors for vaccine improvements: Current status and new approaches. Pharmaceutics. 2022;14(8):1721. [
DOI:10.3390/pharmaceutics14081721] [
PMID] [
PMCID]
24. Kang CK, Kim HR, Song KH, Keam B, Choi SJ, Choe PG, et al. Cell-mediated immunogenicity of influenza vaccination in patients with cancer receiving immune checkpoint inhibitors. J Infect Dis. 2020;222(11):1902-9. [
DOI:10.1093/infdis/jiaa291] [
PMID]
25. Leng Q, Bentwich Z, Borkow G. CTLA-4 upregulation during aging. Mech. Ageing Dev. 2002;123(10):1419-21. [
DOI:10.1016/S0047-6374(02)00077-5] [
PMID]
26. Chen Y, Wang Q, Shi B, Xu P, Hu Z, Bai L, et al. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine. 2011;56(2):231-8. [
DOI:10.1016/j.cyto.2011.06.004] [
PMID]
27. Thio CL, Mosbruger TL, Kaslow RA, Karp CL, Strathdee SA, Vlahov D, et al. Cytotoxic T-lymphocyte antigen 4 gene and recovery from hepatitis B virus infection. J Virol. 2004;78(20):11258-62. [
DOI:10.1128/JVI.78.20.11258-11262.2004] [
PMID] [
PMCID]
28. Hudson L, Rocca K, Song W and Pandey P. CTLA-4 gene polymorphisms in systemic lupus erythematosus, ahighly significant association with a determinant in the promoter region. Hum Genet. 2002;111:452-5. [
DOI:10.1007/s00439-002-0807-2] [
PMID]
29. Talib AL, Kadhim HS, Muhammed AK. Evaluation of Cytotoxic T-Lymphocyte Antigen 4 Polymorphism and Soluble Immune Checkpoint Level Among A Sample of Sars-Cov-2 Iraqi Patients. Pakistan J Medical Health Sci. 2022;16(4):417-9. [
DOI:10.53350/pjmhs22164417]
30. Mahdi YS, Kadhim HS. Evaluation of cytotoxic T-lymphocyte Antigen-4 (+49A/G) gene polymorphism in chronic hepatitis B virus infection. Iraqi J Med Sci. 2020;18(2):101-9. [
DOI:10.22578/IJMS.18.2.3]
31. Simone R, Pesce G, Antola P, Rumbullaku M, Bagnasco M, Bizzaro N, et al. The soluble form of CTLA-4 from serum of patients with autoimmune diseases regulates T-cell responses. Biomed Res Int. 2014;2014:215763. [
DOI:10.1155/2014/215763] [
PMID] [
PMCID]
32. Beserra DR, Alberca RW, Branco AC, Oliveira LM, de Souza Andrade MM, Gozzi-Silva SC, et al. Upregulation of PD-1 expression and high sPD-L1 levels associated with COVID-19 severity. J Immunol Res. 2022;2022:9764002. [
DOI:10.1155/2022/9764002] [
PMID] [
PMCID]