1. Alembizar F, Rezaei Orimi J. A criticism on the article "History of Bacterial Infection Diseases in Iran". Iran J Med Microbiol. 2023;17(1):123-5. [
DOI:10.30699/ijmm.17.1.123]
2. Dirbazian A, Soleimani M, Mousavi SH, Aminianfar M, Mirjani R, Khoshfetrat M, et al. Molecular Detection of Infectious Endocarditis (Coxiella burnetii) Bacteria from Selected Military Hospitals. Iran J Med Microbiol. 2022;16(6):594-600. [
DOI:10.30699/ijmm.16.6.594]
3. Athavale P, Pandit D, Das N. 'Nitric Oxide' A Dual Performer in Dengue Virus Infection. Iran J Med Microbiol. 2022;16(6):537-42. [
DOI:10.30699/ijmm.16.6.537]
4. Asadi N, Hazrati Tappeh K, Yousefi E, Khademvatan S. Differentiation of prevalent parasite from artifacts in parasitology laboratory. Iran J Med Microbiol. 2019;13(2):89-101. [
DOI:10.30699/ijmm.13.2.89]
5. Tofangsazan F, Shahidi F, Mortazavi SA, Milani E, Eshaghi Z. Investigation of antibacterial activity of Lactic Acid Bacteria isolated from traditional kordish cheese in comparison with commercial strains. Iran J Med Microbiol. 2013;7(3):34-41.
6. Aryamand S, khademvatan S, Diba K, Manafpour N, Abbassi E. Stem Cell Therapy in the Treatment of Parasitic Diseases. Iran J Med Microbiol. 2017;11(3):1-9.
7. Fattahi Bafghi A, Minoo Sepehr M, Mozayan MR, Bagheri P, Dehghani A, Rezaee E. Passive Case Findings on Malaria in Yazd as a Central Province of Iran During 2011-2020. Iran J Med Microbiol. 2023;17(1):117-22. [
DOI:10.30699/ijmm.17.1.117]
8. Cai L, Li X, Tuncer N, Martcheva M, Lashari AA. Optimal control of a malaria model with asymptomatic class and superinfection. Math Biosci. 2017;288:94-108. [
DOI:10.1016/j.mbs.2017.03.003] [
PMID]
9. Harianto J. Local stability analysis of an SVIR epidemic model. J Mat Murni Dan Aplik. 2017;5(1):20-8. [
DOI:10.18860/ca.v5i1.4388]
10. Meibalan E, Marti M. Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine. 2017;7(3):a025452. [
DOI:10.1101/cshperspect.a025452] [
PMID] [
PMCID]
11. Wangai LN, Karau MG, Njiruh PN, Sabah O, Kimani FT, Magoma G, et al. Sensitivity of microscopy compared to molecular diagnosis of P. falciparum: implications on malaria treatment in epidemic areas in Kenya. Afr J Infect Dis. 2011;5(1):1-6. [
DOI:10.4314/ajid.v5i1.66504] [
PMID] [
PMCID]
12. Kuddus MA, Rahman A. Modelling and analysis of human-mosquito malaria transmission dynamics in Bangladesh. Math Comput Simul. 2022;193:123-38. [
DOI:10.1016/j.matcom.2021.09.021]
13. Srivastav AK, Ghosh M. Assessing the impact of treatment on the dynamics of dengue fever: A case study of India. Appl Math Comput. 2019;362:124533. [
DOI:10.1016/j.amc.2019.06.047]
14. Koutou O, Traoré B, Sangaré B. Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates. Cogent Math. 2018;5(1):1564531. [
DOI:10.1080/25742558.2018.1564531]
15. Bakary T, Boureima S, Sado T. A mathematical model of malaria transmission in a periodic environment. J Biol Dyn. 2018;12(1):400-32. [
DOI:10.1080/17513758.2018.1468935] [
PMID]
16. Yin H, Yang C, Li J. The impact of releasing sterile mosquitoes on malaria transmission. Discrete and Continuous Dynamical Systems-B. 232018. p. 3837-53. [
DOI:10.3934/dcdsb.2018113]
17. Huo H-F, Qiu G-M. Stability of a Mathematical Model of Malaria Transmission with Relapse. Abstr Appl Anal. 2014;2014:289349. [
DOI:10.1155/2014/289349]
18. Annan K, Mukinay CD. Stability and time-scale analysis of malaria transmission in human-mosquito population. Int j Syst Sci Appl Math. 2017;2(1):1-9. [
DOI:10.11648/j.ijssam.20170201.11]
19. Olaniyi S, Obabiyi Os. Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection. Int J Pure Appl Math. 2013;88:125-56. [
DOI:10.12732/ijpam.v88i1.10]
20. Rahman A, Kuddus MA. Cost-effective modeling of the transmission dynamics of malaria: A case study in Bangladesh. Communications in Statistics: Case Studies, Data Analysis and Applications. 6: Taylor & Francis; 2020. p. 270-86. [
DOI:10.1080/23737484.2020.1731724]
21. Singaram A, Ghosh M. Stability analysis and optimal control of a malaria model with larvivorous fish as biological control agent. Appl Math Inf Sci. 2015;9:1893-913.
22. Ayuba SA, Akeyede I, Olagunju A. Stability and Sensitivity Analysis of Dengue-Malaria Co-Infection Model in Endemic Stage. J Niger Soc Phys Sci. 2021:96-104. [
DOI:10.46481/jnsps.2021.196]
23. Khamis D, El Mouden C, Kura K, Bonsall MB. Optimal control of malaria: combining vector interventions and drug therapies. Mala J. 2018;17(1):174. [
DOI:10.1186/s12936-018-2321-6] [
PMID] [
PMCID]
24. Bala S, Gimba B. Global sensitivity analysis to study the impacts of bed-nets, drug treatment, and their efficacies on a two-strain malaria model. Math Comput Appl. 2019;24(1):32. [
DOI:10.3390/mca24010032]
25. Tchoumi SY, Dongmo EZ, Kamgang JC, Tchuenche JM. Dynamics of a two-group structured malaria transmission model. Inform Med Unlocked. 2022;29:100897. [
DOI:10.1016/j.imu.2022.100897]
26. Chitnis N, Hyman JM, Cushing JM. Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model. Bull Math Biol. 2008;70(5):1272-96. [
DOI:10.1007/s11538-008-9299-0] [
PMID]
27. Traoré B, Sangaré B, Traoré S. A Mathematical Model of Malaria Transmission with Structured Vector Population and Seasonality. J Appl Math. 2017;2017:6754097. [
DOI:10.1155/2017/6754097]
28. Sabgaĭda TP. A mathematical model of the transmission of tertian malaria with short and long incubations. Med Parazitol. 1991(6):23-5.
29. Nainggolan J, Harianto J, Tasman H. An optimal control of prevention and treatment of COVID-19 spread in Indonesia. Commun Math Biol Neurosci. 2023;2023:Article-ID.
30. Xing Y, Guo Z, Liu J. Backward bifurcation in a malaria transmission model. J Biol Dyn. 2020;14(1):368-88. [
DOI:10.1080/17513758.2020.1771443] [
PMID]
31. Malorung F, Blegur M, Pangaribuan R, Ndii M. Sensitivity Analysis of Mathematical Model of Disease Spread with Vaccination. J Mat Int. 2018;14(1):9. [
DOI:10.24198/jmi.v14i1.16000]
32. van den Driessche P. Reproduction numbers of infectious disease models. Infect Dis Model. 2017;2(3):288-303. [
DOI:10.1016/j.idm.2017.06.002] [
PMID] [
PMCID]