year 17, Issue 5 (September - October 2023)                   Iran J Med Microbiol 2023, 17(5): 533-540 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Marom S, Harianto J, Kurniawati E. Sensitivity Analysis of Malaria Transmission Model. Iran J Med Microbiol 2023; 17 (5) :533-540
1- Department of Mathematic Education, Salatiga State Islamic University (UIN Salatiga), Salatiga, Indonesia, Salatiga, Indonesia ,
2- Department of Mathematical Sciences, Cenderawasih University, Papua, Indonesia
3- Department of Radiology, DR. Kariadi Hospital, Semarang, Indonesia
Abstract:   (367 Views)

Background and Aim: Helicobacter pylori is found in the stomach and the oral cavity, which plays a significant role in oral diseases and recurrent gastric infections. This study aimed to detect the presence of oral H. pylori and investigate its potential association with dental caries and erosion.
Materials and Methods: Saliva and plaque samples were collected from two groups: a study group of 40 H. pylori-infected patients, confirmed by immunological tests, and a control group included 40 subjects who were given negative results after laboratory examination. Molecular detection of H. pylori was performed using the polymerase chain reaction (PCR). Additionally, clinical assessments of dental caries and erosions were conducted.
Results: The study group showed a higher prevalence of H. pylori in saliva (62.5%) compared to dental plaque (45.0%). Among the study group, 70% tested positive for H. pylori by PCR, while 30% tested negative. Dental caries experience (DMFS) was slightly higher in the study group compared to the control group, and significant differences in (DS) and (DMFT) (p<0.05). The prevalence of dental erosion was also higher in the study group compared to the control group.
Conclusion: The presence of H. pylori in the oral cavity represents an important risk factor for dental caries and erosion.

Full-Text [PDF 541 kb]   (43 Downloads) |   |   Full-Text (HTML)  (10 Views)  
Type of Study: Original Research Article | Subject: Medical Parasitology
Received: 2023/06/7 | Accepted: 2023/09/16 | ePublished: 2023/11/29

1. Alembizar F, Rezaei Orimi J. A criticism on the article "History of Bacterial Infection Diseases in Iran". Iran J Med Microbiol. 2023;17(1):123-5. [DOI:10.30699/ijmm.17.1.123]
2. Dirbazian A, Soleimani M, Mousavi SH, Aminianfar M, Mirjani R, Khoshfetrat M, et al. Molecular Detection of Infectious Endocarditis (Coxiella burnetii) Bacteria from Selected Military Hospitals. Iran J Med Microbiol. 2022;16(6):594-600. [DOI:10.30699/ijmm.16.6.594]
3. Athavale P, Pandit D, Das N. 'Nitric Oxide' A Dual Performer in Dengue Virus Infection. Iran J Med Microbiol. 2022;16(6):537-42. [DOI:10.30699/ijmm.16.6.537]
4. Asadi N, Hazrati Tappeh K, Yousefi E, Khademvatan S. Differentiation of prevalent parasite from artifacts in parasitology laboratory. Iran J Med Microbiol. 2019;13(2):89-101. [DOI:10.30699/ijmm.13.2.89]
5. Tofangsazan F, Shahidi F, Mortazavi SA, Milani E, Eshaghi Z. Investigation of antibacterial activity of Lactic Acid Bacteria isolated from traditional kordish cheese in comparison with commercial strains. Iran J Med Microbiol. 2013;7(3):34-41.
6. Aryamand S, khademvatan S, Diba K, Manafpour N, Abbassi E. Stem Cell Therapy in the Treatment of Parasitic Diseases. Iran J Med Microbiol. 2017;11(3):1-9.
7. Fattahi Bafghi A, Minoo Sepehr M, Mozayan MR, Bagheri P, Dehghani A, Rezaee E. Passive Case Findings on Malaria in Yazd as a Central Province of Iran During 2011-2020. Iran J Med Microbiol. 2023;17(1):117-22. [DOI:10.30699/ijmm.17.1.117]
8. Cai L, Li X, Tuncer N, Martcheva M, Lashari AA. Optimal control of a malaria model with asymptomatic class and superinfection. Math Biosci. 2017;288:94-108. [DOI:10.1016/j.mbs.2017.03.003] [PMID]
9. Harianto J. Local stability analysis of an SVIR epidemic model. J Mat Murni Dan Aplik. 2017;5(1):20-8. [DOI:10.18860/ca.v5i1.4388]
10. Meibalan E, Marti M. Biology of malaria transmission. Cold Spring Harbor Perspectives in Medicine. 2017;7(3):a025452. [DOI:10.1101/cshperspect.a025452] [PMID] [PMCID]
11. Wangai LN, Karau MG, Njiruh PN, Sabah O, Kimani FT, Magoma G, et al. Sensitivity of microscopy compared to molecular diagnosis of P. falciparum: implications on malaria treatment in epidemic areas in Kenya. Afr J Infect Dis. 2011;5(1):1-6. [DOI:10.4314/ajid.v5i1.66504] [PMID] [PMCID]
12. Kuddus MA, Rahman A. Modelling and analysis of human-mosquito malaria transmission dynamics in Bangladesh. Math Comput Simul. 2022;193:123-38. [DOI:10.1016/j.matcom.2021.09.021]
13. Srivastav AK, Ghosh M. Assessing the impact of treatment on the dynamics of dengue fever: A case study of India. Appl Math Comput. 2019;362:124533. [DOI:10.1016/j.amc.2019.06.047]
14. Koutou O, Traoré B, Sangaré B. Mathematical model of malaria transmission dynamics with distributed delay and a wide class of nonlinear incidence rates. Cogent Math. 2018;5(1):1564531. [DOI:10.1080/25742558.2018.1564531]
15. Bakary T, Boureima S, Sado T. A mathematical model of malaria transmission in a periodic environment. J Biol Dyn. 2018;12(1):400-32. [DOI:10.1080/17513758.2018.1468935] [PMID]
16. Yin H, Yang C, Li J. The impact of releasing sterile mosquitoes on malaria transmission. Discrete and Continuous Dynamical Systems-B. 232018. p. 3837-53. [DOI:10.3934/dcdsb.2018113]
17. Huo H-F, Qiu G-M. Stability of a Mathematical Model of Malaria Transmission with Relapse. Abstr Appl Anal. 2014;2014:289349. [DOI:10.1155/2014/289349]
18. Annan K, Mukinay CD. Stability and time-scale analysis of malaria transmission in human-mosquito population. Int j Syst Sci Appl Math. 2017;2(1):1-9. [DOI:10.11648/j.ijssam.20170201.11]
19. Olaniyi S, Obabiyi Os. Mathematical model for malaria transmission dynamics in human and mosquito populations with nonlinear forces of infection. Int J Pure Appl Math. 2013;88:125-56. [DOI:10.12732/ijpam.v88i1.10]
20. Rahman A, Kuddus MA. Cost-effective modeling of the transmission dynamics of malaria: A case study in Bangladesh. Communications in Statistics: Case Studies, Data Analysis and Applications. 6: Taylor & Francis; 2020. p. 270-86. [DOI:10.1080/23737484.2020.1731724]
21. Singaram A, Ghosh M. Stability analysis and optimal control of a malaria model with larvivorous fish as biological control agent. Appl Math Inf Sci. 2015;9:1893-913.
22. Ayuba SA, Akeyede I, Olagunju A. Stability and Sensitivity Analysis of Dengue-Malaria Co-Infection Model in Endemic Stage. J Niger Soc Phys Sci. 2021:96-104. [DOI:10.46481/jnsps.2021.196]
23. Khamis D, El Mouden C, Kura K, Bonsall MB. Optimal control of malaria: combining vector interventions and drug therapies. Mala J. 2018;17(1):174. [DOI:10.1186/s12936-018-2321-6] [PMID] [PMCID]
24. Bala S, Gimba B. Global sensitivity analysis to study the impacts of bed-nets, drug treatment, and their efficacies on a two-strain malaria model. Math Comput Appl. 2019;24(1):32. [DOI:10.3390/mca24010032]
25. Tchoumi SY, Dongmo EZ, Kamgang JC, Tchuenche JM. Dynamics of a two-group structured malaria transmission model. Inform Med Unlocked. 2022;29:100897. [DOI:10.1016/j.imu.2022.100897]
26. Chitnis N, Hyman JM, Cushing JM. Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis of a Mathematical Model. Bull Math Biol. 2008;70(5):1272-96. [DOI:10.1007/s11538-008-9299-0] [PMID]
27. Traoré B, Sangaré B, Traoré S. A Mathematical Model of Malaria Transmission with Structured Vector Population and Seasonality. J Appl Math. 2017;2017:6754097. [DOI:10.1155/2017/6754097]
28. Sabgaĭda TP. A mathematical model of the transmission of tertian malaria with short and long incubations. Med Parazitol. 1991(6):23-5.
29. Nainggolan J, Harianto J, Tasman H. An optimal control of prevention and treatment of COVID-19 spread in Indonesia. Commun Math Biol Neurosci. 2023;2023:Article-ID.
30. Xing Y, Guo Z, Liu J. Backward bifurcation in a malaria transmission model. J Biol Dyn. 2020;14(1):368-88. [DOI:10.1080/17513758.2020.1771443] [PMID]
31. Malorung F, Blegur M, Pangaribuan R, Ndii M. Sensitivity Analysis of Mathematical Model of Disease Spread with Vaccination. J Mat Int. 2018;14(1):9. [DOI:10.24198/jmi.v14i1.16000]
32. van den Driessche P. Reproduction numbers of infectious disease models. Infect Dis Model. 2017;2(3):288-303. [DOI:10.1016/j.idm.2017.06.002] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc