year 14, Issue 6 (November & December 2020)                   Iran J Med Microbiol 2020, 14(6): 566-583 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rouhi V, Safarkar R, Habibi S. Phonotypic Investigation of Biofilm Formation and Determination of Presence of bap and blaOXA-51 Genes in Acinetobacter baumannii From Clinical Specimens in Tehran. Iran J Med Microbiol. 2020; 14 (6) :566-583
URL: http://ijmm.ir/article-1-1110-en.html
1- Department of biology, Islamic Azad University, Ardabil Branch, Ardabil, Iran
2- Department of biology, Islamic Azad University, Ardabil Branch, Ardabil, Iran , royasafarkar@yahoo.com
3- Department of biology, Islamic Azad University, Guilan Branch, Guilan, Iran
Abstract:   (1583 Views)
 Background:  Acinetobacter baumannii is a non-fermentative gram-negative coccobacill that has high level of resistance to antimicrobial agents. Biofilm formation is an important feature of most clinical isolates of Acinetobacter spp, this led to higher resistance to antibiotics. The current study aimed to assess the ability of biofilm production and to determine the frequency of bap gene in clinical isolates of Acinetobacter baumannii.
 Materials & Methods:   This descriptive cross-sectional study was performed on 165 strains collected from hospitals of Tehran in 2019 and confirmatory tests were performed to identify the bacteria.  The antibiotic resistance pattern of the isolates was determined by disk diffusion method against 10 antibiotics and also the ability of biofilm production was evaluated by microtiter plate method (MPT) and tube method (TM). Subsequently Molecular assays of blaOXA-51 and bap genes identification and its frequency were investigated.
Results:   In this study, among 165 isolates examined, 73 isolates were confirmed as Acinetobacter baumannii. Among 73 strains studied the most antibiotic resistance was imipenem (94.52%). blaOXA-51 and bap genes were detected in 100% and 53.42% of isolates. Also, 8 isolates (10.95%) by MTP and 7 isolates (9.58%) by the TM method were able to form strong biofilm.
Conclusion:   The results obtained showed that in consistent with other researches, biofilm formation in Acinetobacter baumannii isolates was associated with present of bap gene.
Full-Text [PDF 1578 kb]   (710 Downloads) |   |   Full-Text (HTML)  (628 Views)  
Type of Study: Original | Subject: Medical Bacteriology
Received: 2020/04/22 | Accepted: 2020/08/17 | ePublished: 2020/10/27

References
1. Kooti S, Motamedifar M, Sarvari J. Antibiotic resistance profile and distribution of oxacillinase genes among clinical isolates of Acinetobacter baumannii in Shiraz teaching hospitals, 2012-2013. Jundishapur J Microbiol. 2015 ;8(8). [DOI:10.5812/jjm.20215v2]
2. Cerqueira GM, Peleg AY. Insights into Acinetobacter baumannii pathogenicity. IUBMB life. 2011;63(12):1055-60. [DOI:10.1002/iub.533] [PMID]
3. McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii human infections, factors contributing to pathogenesis and animal models . FEMS Microbiol Rev. 2013;37(2):130-55 [DOI:10.1111/j.1574-6976.2012.00344.x] [PMID]
4. Gaddy JA, Actis LA. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009;4(3):273-8. [DOI:10.2217/fmb.09.5] [PMID] [PMCID]
5. Brossard KA, Campagnari AA. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect Immun. 2012;80(1):228-33 [DOI:10.1128/IAI.05913-11] [PMID] [PMCID]
6. Ford M. Med Microbiol. Oxford University Press; 2014.
7. Zhao C, Xing M, Yang J, Lu Y, Lv B. Microbial community structure and metabolic property of biofilms in vermifiltration for liquid-state sludge stabilization using PLFA profiles. Bioresour Technol. 2014; 151:340-6. [DOI:10.1016/j.biortech.2013.10.075] [PMID]
8. Thummeepak R, Kongthai P, Leungtongkam U, Sitthisak S. Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int Microbiol. 2016 ;19(2):121-9.
9. Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm associated protein. J. Bacteriol. 2008; 190: 1036-1044. [DOI:10.1128/JB.01416-07] [PMID] [PMCID]
10. Dadgar T, Vahedi Z, Yazdansetad S, Kiaei E, Asaadi H. Phenotypic Investigation of Biofilm Formation and the Prevalence of icaA and icaD Genes in Staphylococcus epidermidis Isolates . Iran J Med Microbiol. 2019; 12 (6) :371-381 [DOI:10.30699/ijmm.12.6.371]
11. Jalali M, Rasooli I, Ahmadi Zanoos K, Jahangiri A, Jalali Nadooshan M, Darvish Alipour Astaneh S. Immunogenicity of amino acid region 7601-8140 in biofilm associated protein of Acinetobacter baumannii. Pathobiol Res. 2014 ;16(4):15-26.
12. Wayne PA. Clinical and laboratory standards institute, performance standards for antimicrobial susceptibility testing; 29th informational supplement M100, CLSI, 2019.
13. Ranjbar R, Memariani M. Multilocus variable-number tandem-repeat analysis for genotyping of Shigella sonnei strains isolated from pediatric patients. Gastroenterology and hepatology from bed to bench. 2015;8(3): 225. [DOI:10.26226/morressier.56d5ba2dd462b80296c94fd4]
14. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.Int J Antimicrob Agents. 2006 ;27(4):351-3. [DOI:10.1016/j.ijantimicag.2006.01.004] [PMID]
15. Heidari H, Hadadi M, Ebrahim-Saraie HS, Mirzaei A, Taji A, Hosseini SR, Motamedifar M. Characterization of virulence factors, antimicrobial resistance patterns and biofilm formation of Pseudomonas aeruginosa and Staphylococcus spp. strains isolated from corneal infection. J francais d'ophtalmologie 2018 ;41(9):823-9 [DOI:10.1016/j.jfo.2018.01.012] [PMID]
16. Ruchi T, Sujata B, Anuradha D. Comparison of phenotypic methods for the detection of biofilm production in uro-pathogens in a tertiary care hospital in India. Int J Curr Microbiol App Sci. 2015;4(9):840-49.
17. Asif M, Alvi IA, Rehman SU. Insight into Acinetobacter baumannii pathogenesis global resistance mechanisms of resistance, treatment options, and alternative modalities. Infect Drug Resist. 2018; 11:1249. [DOI:10.2147/IDR.S166750] [PMID] [PMCID]
18. Cornejo-García JA, Perkins JR, Jurado-Escobar R, García-Martín E, Agúndez JA, Viguera E,et al. Pharmacogenomics of prostaglandin and leukotriene receptors. Front Pharmacol. 2016; 7:316. [DOI:10.3389/fphar.2016.00316] [PMID] [PMCID]
19. Hatami R. The frequency of multidrug-resistance and extensively drug-resistant Acinetobacter baumannii in west of Iran. J Clin Microbiol Infect Dis. 2018;1(1):4-8.
20. Goudarzi H, Douraghi M, Ghalavand Z, Goudarzi M. Assessment of antibiotic resistance pattern in Acinetobacter bumannii carrying bla oxA type genes isolated from hospitalized patients.Novelty Biomed. 2013 ;1(2):54-61.
21. You MJ, Kim WI, Cho HS, Shin GW, Hwang JH, Lee CS. Human anaplasmosis in acute febrile patients during scrub typhus season in Korea.Infect Chemother. 2015;47(3):181. [DOI:10.3947/ic.2015.47.3.181] [PMID] [PMCID]
22. Goudarzi M, Azimi H. Dissemination of classes 1, 2, and 3 integrons in acinetobacter baumannii strains recovered from intensive care units using polymerase chain reaction-restriction fragment length polymorphism. Jundishapur J Microbiol. 2017;10(5). [DOI:10.5812/jjm.13100]
23. Longo F, Vuotto C, Donelli G. Biofilm formation in Acinetobacter baumannii. New Microbiol. 2014; 37(2):119-27
24. Qi L, Li H, Zhang C, Liang B, Li J, Wang L, et al. Relationship between antibiotic resistance, biofilm formation and biofilm-specific resistance in Acinetobacter baumannii. Front Microbiol. 2016; 7:483 [DOI:10.3389/fmicb.2016.00483] [PMID] [PMCID]
25. Sung JY, Koo SH, Kim S, Kwon GC. Persistence of multidrug-resistant Acinetobacter baumannii isolates harboring blaOXA-23 and bap for 5 years. J Microbiol Biotechno. 2016 ;26(8):1481-9. [DOI:10.4014/jmb.1604.04049] [PMID]
26. Goh HS, Beatson SA, Totsika M, Moriel DG, Phan MD, Szubert J, et al. Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl. Environ Microbiol 2013;79(21):6535-43. [DOI:10.1128/AEM.01402-13] [PMID] [PMCID]
27. Luo TL, Rickard AH, Srinivasan U, Kaye KS, Foxman B. Association of blaOXA-23 and bap with the persistence of Acinetobacter baumannii within a major healthcare system. Front Microbiol. 2015; 6:182. [DOI:10.3389/fmicb.2015.00182] [PMID] [PMCID]
28. Keshavarz-Hedayati S, Shapouri R, Habibollah-Pourzereshki N, Bigverdi R, Peymani A. Molecular investigation of resistance to disinfectants in Acinetobacter Baumannii isolates collected from Qazvin hospitals, Iran 2017. J Qazvin Univ Med Sci. 2019;23(1):2-13. [DOI:10.32598/JQUMS.23.1.2]
29. Abdulzahra AT, Khalil MA, Elkhatib WF. First report of colistin resistance among carbapenem-resistant Acinetobacter baumannii isolates recovered from hospitalized patients in Egypt. New Microbes New Infect. 2018; 26:53-8. [DOI:10.1016/j.nmni.2018.08.007] [PMID] [PMCID]
30. El-Khier NTA, ElKazzaz SS, Elganainy AE. Phenotypic and Genotypic Detection of Biofilm Formation in Staphylococcus epidermidis Isolates from Retrieved Orthopaedic Implants and Prostheses. Br Microbiol Res J. 2015; 9(4): 1-10. [DOI:10.9734/BMRJ/2015/18650]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc