year 14, Issue 3 (May-Jun 2020)                   Iran J Med Microbiol 2020, 14(3): 227-240 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moshafi M H, Ranjbar M, Zeinalizadeh Rafsanjnai Z, Mehrabi F. Preparation and Evaluation of the Physicochemical and Antimicrobial Properties of Biological Nanostructures Polyolactic Acid / Calcium Oxide by Hydrothermal Assisted Microwave Method. Iran J Med Microbiol. 2020; 14 (3) :227-240
URL: http://ijmm.ir/article-1-1090-en.html
1- Professor of Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
2- Assistant professor of Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran , Mehdi.ranjbar@kmu.ac.ir
3- Graduate of General Pharmacy, Student research committee, Kerman university of medical sciences, Kerman, Iran
4- Student of General Pharmacy, Student research committee, Kerman university of medical sciences, Kerman, Iran
Abstract:   (1533 Views)

Background: Today, with the development of human life and the overwhelming fall of antibiotics and uncontrolled bacterial resistance, the need to find materials with antimicrobial effects is felt more than ever. Nanotechnology has created a new opportunity to investigate the antimicrobial effects of nanomaterials.
Materials & Methods: In this study, using hydrothermal and microwave auxiliary chemicals, polylactic acid / calcium oxide nanostructures were prepared and the physicochemical and microbial properties of these nanostructures were evaluated. Bacterial strains were obtained from the Scientific and Industrial Research Organization of Iran, the collection center of industrial microorganisms.
Results: Physicochemical characterization of optimized polylactic acid / calcium oxide nanostructures showed the antimicrobial effect of nanoparticles on 3 strains gram-positive bacteria Micrococcus luteus (PTCC 1110), Bacillus subtilis (PTCC 1023), Staphylococcus aureus (PTCC 1112) and 4 strains gram-negative bacteria Escherichia coli (PTCC 1330), Klebsiella pneumonia (PTCC 1053), Serratia marcescens (PTCC 1621), Pseudomonas aeruginosa (PTCC 1074). In this study, the observed MIC (minimum growth inhibition concentration) observed for both Gram-positive and Gram-negative bacteria ranged between 0.5
Conclusion: Antimicrobial effect of polyelactic acid / calcium oxide nanostructures was observed on all the mentioned bacteria except E. coli. It is recommended to conduct microbial and cellular studies on these nanomaterials.

Full-Text [PDF 1101 kb]   (489 Downloads) |   |   Full-Text (HTML)  (231 Views)  
Type of Study: Original | Subject: Nanotechnology In Medicine
Received: 2020/03/29 | Accepted: 2020/06/14 | ePublished: 2020/05/12

References
1. Bhushan B. Introduction to nanotechnology. Springer handbook of nanotechnology: Springer; 2010. p. 1-13. [DOI:10.1007/978-3-642-02525-9_1]
2. Golabiazar R, Othman KI, Khalid KM, Maruf DH, Aulla SM. Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract. Bionanoscience. 2019;9(2):323-33. [DOI:10.1007/s12668-019-0606-z]
3. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich MJFm. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2018; 4 (4):113-123.
4. Khanipour A, Bahmani Z, Oromiehie A, Motalebi AJ. Effect of packaging with nano-composite clay/LDPE film on the quality of rainbow trout (Oncorhynchus mykiss) fillet at refrigerated storage. IRAN J FISH SCI. 2020;19(2):698-714.
5. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, et al. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;11(5):4651-9. [DOI:10.1021/acsnano.7b00343] [PMID]
6. Shi L-E, Li Z-H, Zheng W, Zhao Y-F, Jin Y-F. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food additives & contaminants. Part A. 2014;31(2):173-86. [DOI:10.1080/19440049.2013.865147] [PMID]
7. Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook: Elsevier; 2018.
8. Heidari AJMJOC. Vibrational biospectroscopic studies on anti-cancer nanopharmaceuticals (Part II). Nanomed. 2018;20(1):74-117.
9. Yousefshahi H, Aminsobhani M, Shokri M, Shahbazi RJEjotm. Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide. Eur J Transl Myol. 2018;28 (4): 22-28. [DOI:10.4081/ejtm.2018.7545] [PMID] [PMCID]
10. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004;61(3):216-20. [DOI:10.1016/j.surneu.2003.09.036] [PMID]
11. Raghupathi KR, Koodali RT, Manna ACJL. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020-8. [DOI:10.1021/la104825u] [PMID]
12. Honary S, Zahir FJTJoPR. Effect of zeta potential on the properties of nano-drug delivery systems-a review. AJOL. 2013;12(2):265-73. [DOI:10.4314/tjpr.v12i2.19]
13. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016;33(10):2373-87. [DOI:10.1007/s11095-016-1958-5] [PMID]
14. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SRJPr. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2015;34(9): 71-89.
15. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13):1803-15. [DOI:10.1016/j.addr.2013.07.011] [PMID]
16. Pelgrift RY, Friedman AJJAddr. Nanotechnology as a therapeutic tool to combat microbial resistance. 2013;65(13-14):1803-15. [DOI:10.1016/j.addr.2013.07.011] [PMID]
17. Shorr AFJCcm. Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med. 2009;37(4):1463-9. [DOI:10.1097/CCM.0b013e31819ced02] [PMID]
18. Zaidi S, Misba L, Khan AUJNN, Biology, Medicine. Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine. 2017;13(7):2281-301. [DOI:10.1016/j.nano.2017.06.015] [PMID]
19. ALrawashdeh IN, Qaralleh H, Al-limoun MO, Khleifat KMJapa. Antibactrial Activity of Asteriscus graveolens Methanolic Extract: Synergistic Effect with Fungal Mediated Nanoparticles against Some Enteric Bacterial Human Pathogens. J. basic appl. Res biomed. 2019;5(2): 89-98.
20. Basavalingaiah K, Harishkumar S, Nagaraju GJF. Uniform deposition of silver dots on sheet like BiVO4 nanomaterials for efficient visible light active photocatalyst towards methylene blue degradation. FlatChem. 2020;19 (4):113-142. [DOI:10.1016/j.flatc.2019.100142]
21. Lam SJ, Wong EH, Boyer C, Qiao GGJPips. Antimicrobial polymeric nanoparticles. Progress in Poly. Sci. 2018;76:40-64. [DOI:10.1016/j.progpolymsci.2017.07.007]
22. Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SKJAJoC. Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab. J. Chem. 2018;11(1):120-7. [DOI:10.1016/j.arabjc.2016.09.008]
23. Zheng K, Setyawati MI, Leong DT, Xie JJAn. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904-10. [DOI:10.1021/acsnano.7b02035] [PMID]
24. Shahriary M, Veisi H, Hekmati M, Hemmati SJMS, C E. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C. 2018;90:57-66. [DOI:10.1016/j.msec.2018.04.044] [PMID]
25. Vergheese M, Vishal SKJJPP. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. Int. J. Pharmacogn. Phytochem. 2018;7:1193-200.
26. Abd Elsalam SS, Taha RH, Tawfeik AM, El-Monem A, Mohamed O, Mahmoud HAJTEJoHM. Antimicrobial activity of bio and chemical synthesized cadmium sulfide nanoparticles. Egypt. J. Hosp. Med. 2018;70(9):1494-507. [DOI:10.12816/0044675]
27. Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J Hazard Mater. 2018;347:141-9. [DOI:10.1016/j.jhazmat.2017.12.070] [PMID]
28. Bonan RF, Bonan PR, Sampaio FC, Albuquerque AJ. In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mat. Sci. Eng. Matt. 2015;48:372-7. [DOI:10.1016/j.msec.2014.12.021] [PMID]
29. Liu L, Finkenstadt V, Liu CK, Jin T, Fishman M, Hicks KJJoAPS. Preparation of poly (lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J. Appl. Polym. Sci. 2007;106(2):801-10. [DOI:10.1002/app.26590]
30. Scaffaro R, Lopresti F, Marino A, Nostro A. Antimicrobial additives for poly (lactic acid) materials and their applications: current state and perspectives. Biotech. 2018;102(18):7739-56. [DOI:10.1007/s00253-018-9220-1] [PMID]
31. Tokuda S, Obata A, Kasuga T. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity. Acta Biomaterialia. 2009;5(4):1163-8. [DOI:10.1016/j.actbio.2008.10.005] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc