سال 14، شماره 3 - ( خرداد - تیر 1399 )                   جلد 14 شماره 3 صفحات 240-227 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moshafi M H, Ranjbar M, Zeinalizadeh Rafsanjnai Z, Mehrabi F. Preparation and Evaluation of the Physicochemical and Antimicrobial Properties of Biological Nanostructures Polyolactic Acid / Calcium Oxide by Hydrothermal Assisted Microwave Method. Iran J Med Microbiol 2020; 14 (3) :227-240
URL: http://ijmm.ir/article-1-1090-fa.html
مصحفی محمدحسن، رنجبر مهدی، زینلی زاده رفسنجانی زهرا، مهرابی فاطمه. تهیه و ارزیابی خصوصیات فیزیکوشیمیایی و ضدمیکروبی نانوساختارهای زیستی پلی‌ لاکتیک اسید/کلسیم اکساید به روش کمکی هیدروترمال و مایکروویو. مجله میکروب شناسی پزشکی ایران. 1399; 14 (3) :227-240

URL: http://ijmm.ir/article-1-1090-fa.html


1- پروفسور، عضو هیات علمی مرکز تحقیقات فارماسیوتیکس، دانشگاه علوم پزشکی کرمان، کرمان، ایران
2- استادیار، عضو هیات علمی مرکز تحقیقات فارماسیوتیکس، دانشگاه علوم پزشکی کرمان، کرمان، ایران ، Mehdi.ranjbar@kmu.ac.ir
3- فارغ التحصیل داروسازی عمومی، کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
4- دانشجوی داروسازی عمومی، کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
چکیده:   (4954 مشاهده)

زمینه و اهداف: امروزه همگام با توسعۀ زندگی بشر و افتاده ی بی‌رویه از آنتی‌بیوتیک‌ها و مقاومت کنترل نشدۀ باکتریایی نیاز به یافتن مواد با تاثیرات ضدمیکروبی بیش از هر زمانی احساس می‌شود. تکنولوژی نانو فرصت جدید برای بررسی تاثیرات ضد میکروبی مواد در ابعاد نانو ایجاد کرده است.
مواد و روش کار: در این مطالعه با استفاده از روش شیمیایی کمکی هیدروترمال و مایکروویو نانوساختارهای پلی‌لاکتیک اسید/کلسیم اکساید تهیه و خصوصیات فیزیکوشیمیایی و میکروبی این نانوساختارها مورد ارزیابی قرار گرفت. سویه‌های باکتریایی از سازمان پژوهش‌های علمی و صنعتی ایران مرکز کلکسیون میکروارگانیسم‌های صنعتی تهیه شد.
یافته‌ها: خصوصیات فیزیکوشیمیایی نانوساختارهای پلی‌لاکتیک اسید/کلسیم اکساید بهینه‌شده نشان داد که اثر ضدمیکروبی نانوذرات بر روی ۳ سویه باکتری گرم مثبت میکروکوکوس لوتئوس (PTCC ۱۱۱۰) ، باسیلوس سابتیلیس (PTCC ۱۰۲۳) ، استافیلوکوکوس اورئوس(PTCC ۱۱۱۲)  و ۴ سویه باکتری گرم منفی اشریشیا کولی(PTCC ۱۳۳۰) ، کلبسیلا پنومونیه(PTCC ۱۰۵۳) ، سراشیا مارسسنس(PTCC ۱۶۲۱) ، سودوموناس آئروژینوزا (PTCC ۱۰۷۴) مشاهده شد. در این مطالعه، MIC (بررسی حداقل غلظت مهار رشد) مشاهده شده برای هر دو گروه باکتری‌های گرم مثبت و گرم منفی بین محدودۀ ۸≥۵/۰ قرار می‌گیرد.
نتیجه‌گیری: نتایج نشان می‌دهند اثر ضدمیکروبی نانوساختارهای پلی‌لاکتیک اسید/کلسیم اکساید بر روی تمامی باکتری‌های ذکر شده به غیر از باکتری اشریشیا کولی مشاهده شد. پیشنهاد می‌گردد مطالعات میکروبی و همچنین سلولی بر روی این نانومواد انجام شود.

متن کامل [PDF 1101 kb]   (1748 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: نانو بیوتکنولوژی در پزشکی
دریافت: 1399/1/10 | پذیرش: 1399/3/25 | انتشار الکترونیک: 1399/2/23

فهرست منابع
1. Bhushan B. Introduction to nanotechnology. Springer handbook of nanotechnology: Springer; 2010. p. 1-13. [DOI:10.1007/978-3-642-02525-9_1]
2. Golabiazar R, Othman KI, Khalid KM, Maruf DH, Aulla SM. Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract. Bionanoscience. 2019;9(2):323-33. [DOI:10.1007/s12668-019-0606-z]
3. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich MJFm. Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites. Future Microbiol. 2018; 4 (4):113-123.
4. Khanipour A, Bahmani Z, Oromiehie A, Motalebi AJ. Effect of packaging with nano-composite clay/LDPE film on the quality of rainbow trout (Oncorhynchus mykiss) fillet at refrigerated storage. IRAN J FISH SCI. 2020;19(2):698-714.
5. Cao F, Ju E, Zhang Y, Wang Z, Liu C, Li W, et al. An efficient and benign antimicrobial depot based on silver-infused MoS2. ACS Nano. 2017;11(5):4651-9. [DOI:10.1021/acsnano.7b00343] [PMID]
6. Shi L-E, Li Z-H, Zheng W, Zhao Y-F, Jin Y-F. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food additives & contaminants. Part A. 2014;31(2):173-86. [DOI:10.1080/19440049.2013.865147] [PMID]
7. Naito M, Yokoyama T, Hosokawa K, Nogi K. Nanoparticle technology handbook: Elsevier; 2018.
8. Heidari AJMJOC. Vibrational biospectroscopic studies on anti-cancer nanopharmaceuticals (Part II). Nanomed. 2018;20(1):74-117.
9. Yousefshahi H, Aminsobhani M, Shokri M, Shahbazi RJEjotm. Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide. Eur J Transl Myol. 2018;28 (4): 22-28. [DOI:10.4081/ejtm.2018.7545] [PMID] [PMCID]
10. Silva GA. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004;61(3):216-20. [DOI:10.1016/j.surneu.2003.09.036] [PMID]
11. Raghupathi KR, Koodali RT, Manna ACJL. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 2011;27(7):4020-8. [DOI:10.1021/la104825u] [PMID]
12. Honary S, Zahir FJTJoPR. Effect of zeta potential on the properties of nano-drug delivery systems-a review. AJOL. 2013;12(2):265-73. [DOI:10.4314/tjpr.v12i2.19]
13. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016;33(10):2373-87. [DOI:10.1007/s11095-016-1958-5] [PMID]
14. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SRJPr. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2015;34(9): 71-89.
15. Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13):1803-15. [DOI:10.1016/j.addr.2013.07.011] [PMID]
16. Pelgrift RY, Friedman AJJAddr. Nanotechnology as a therapeutic tool to combat microbial resistance. 2013;65(13-14):1803-15. [DOI:10.1016/j.addr.2013.07.011] [PMID]
17. Shorr AFJCcm. Review of studies of the impact on Gram-negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med. 2009;37(4):1463-9. [DOI:10.1097/CCM.0b013e31819ced02] [PMID]
18. Zaidi S, Misba L, Khan AUJNN, Biology, Medicine. Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine. 2017;13(7):2281-301. [DOI:10.1016/j.nano.2017.06.015] [PMID]
19. ALrawashdeh IN, Qaralleh H, Al-limoun MO, Khleifat KMJapa. Antibactrial Activity of Asteriscus graveolens Methanolic Extract: Synergistic Effect with Fungal Mediated Nanoparticles against Some Enteric Bacterial Human Pathogens. J. basic appl. Res biomed. 2019;5(2): 89-98.
20. Basavalingaiah K, Harishkumar S, Nagaraju GJF. Uniform deposition of silver dots on sheet like BiVO4 nanomaterials for efficient visible light active photocatalyst towards methylene blue degradation. FlatChem. 2020;19 (4):113-142. [DOI:10.1016/j.flatc.2019.100142]
21. Lam SJ, Wong EH, Boyer C, Qiao GGJPips. Antimicrobial polymeric nanoparticles. Progress in Poly. Sci. 2018;76:40-64. [DOI:10.1016/j.progpolymsci.2017.07.007]
22. Rahman PM, Mujeeb VA, Muraleedharan K, Thomas SKJAJoC. Chitosan/nano ZnO composite films: enhanced mechanical, antimicrobial and dielectric properties. Arab. J. Chem. 2018;11(1):120-7. [DOI:10.1016/j.arabjc.2016.09.008]
23. Zheng K, Setyawati MI, Leong DT, Xie JJAn. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904-10. [DOI:10.1021/acsnano.7b02035] [PMID]
24. Shahriary M, Veisi H, Hekmati M, Hemmati SJMS, C E. In situ green synthesis of Ag nanoparticles on herbal tea extract (Stachys lavandulifolia)-modified magnetic iron oxide nanoparticles as antibacterial agent and their 4-nitrophenol catalytic reduction activity. Mater. Sci. Eng. C. 2018;90:57-66. [DOI:10.1016/j.msec.2018.04.044] [PMID]
25. Vergheese M, Vishal SKJJPP. Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. Int. J. Pharmacogn. Phytochem. 2018;7:1193-200.
26. Abd Elsalam SS, Taha RH, Tawfeik AM, El-Monem A, Mohamed O, Mahmoud HAJTEJoHM. Antimicrobial activity of bio and chemical synthesized cadmium sulfide nanoparticles. Egypt. J. Hosp. Med. 2018;70(9):1494-507. [DOI:10.12816/0044675]
27. Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W. Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: Novel approach and mechanisms investigation. J Hazard Mater. 2018;347:141-9. [DOI:10.1016/j.jhazmat.2017.12.070] [PMID]
28. Bonan RF, Bonan PR, Sampaio FC, Albuquerque AJ. In vitro antimicrobial activity of solution blow spun poly (lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil. Mat. Sci. Eng. Matt. 2015;48:372-7. [DOI:10.1016/j.msec.2014.12.021] [PMID]
29. Liu L, Finkenstadt V, Liu CK, Jin T, Fishman M, Hicks KJJoAPS. Preparation of poly (lactic acid) and pectin composite films intended for applications in antimicrobial packaging. J. Appl. Polym. Sci. 2007;106(2):801-10. [DOI:10.1002/app.26590]
30. Scaffaro R, Lopresti F, Marino A, Nostro A. Antimicrobial additives for poly (lactic acid) materials and their applications: current state and perspectives. Biotech. 2018;102(18):7739-56. [DOI:10.1007/s00253-018-9220-1] [PMID]
31. Tokuda S, Obata A, Kasuga T. Preparation of poly(lactic acid)/siloxane/calcium carbonate composite membranes with antibacterial activity. Acta Biomaterialia. 2009;5(4):1163-8. [DOI:10.1016/j.actbio.2008.10.005] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.