year 13, Issue 4 (September - October 2019)                   Iran J Med Microbiol 2019, 13(4): 233-250 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirhosseini M, Kargaran Bafghi A. The Combined Effect of Copper Oxide and Magnesium Oxide Nanoparticles Against Water and Food Borne Bacteria. Iran J Med Microbiol 2019; 13 (4) :233-250
URL: http://ijmm.ir/article-1-952-en.html
1- Proof. Assist of Microbiology, Department of Biology, Payam-e Noor University, Iran , m.mirhossaini@gmail.com
2- M.Sc of Microbiology, Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
Abstract:   (6523 Views)

Background: The incidence of foodborne infectious diseases has been stable and even increased in many countries. Improper use of antibiotics due to the prevalence of microbial diseases has caused drug resistance. So nanotechnology has many attractive applications in the food industry, such as food preservation and food quality control. By the reason, the absorptive and antibacterial features of copper oxide nanoparticles combining with magnesium oxide nanoparticles in killing the bacteria were investigated.
Materials and Methods: The antibacterial activities of CuO NP in combination with MgO NP against Escherichia coli and Staphylococcus aureus in culture media and fruit juice (mango, pomegranate, and peach) by agar diffusion and colony count method were explored. Electron microscopy was used to characterize the morphological characteristics of the bacteria tested after treatment with CuO and MgO NPs.
Results: The results of one-way ANOVA by 95% confidence showed that CuO and MgO NPs have antimicrobial activity on E. coli and S. aureus. An effect of synergism was observed when combining CuO and MgO NP. Electron microscopy photographs showed that treatment with the combination of MgO and CuO caused damage to the cell membrane. As a result, the leakage of intracellular contents kills the bacteria.
Conclusion: The combination of CuO and MgO nanoparticles can successfully control the growth of E. coli and S. aureus in liquid and juice medium. So, this combination treatment can reduce the required amount of CuO and MgO nanoparticles during the pathogen control process in the food industry.

Full-Text [PDF 2485 kb]   (2126 Downloads) |   |   Full-Text (HTML)  (2302 Views)  
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2019/08/7 | Accepted: 2020/01/19 | ePublished: 2020/01/20

References
1. Singh A, Poshtiban S, Evoy S. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors. 2013; 13(2):1763-86. [DOI:10.3390/s130201763] [PMID] [PMCID]
2. Matthews KR, Kniel KE, Montville TJ. Food microbiology: An Introduction. 4th ed. Washington, D.C.: ASM Press; 2014.
3. Roy A, Gauri SS, Bhattacharya M, Bhattacharya J. Antimicrobial activity of CaO nanoparticles. J Biomed Nanotech. 2013; 9(9):1570-8. [DOI:10.1166/jbn.2013.1681] [PMID]
4. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal‐based nanoparticles and their toxicity assessment. Wiley interdisciplinary reviews: Nanomed Nanobiotechnol. 2010; 2(5):544-68. doi: 10.1002/wnan.103 [DOI:10.1002/wnan.103] [PMID]
5. McNeece G, Naughton V, Woodward MJ, Dooley JS, Naughton PJ. Array based detection of antibiotic resistance genes in Gram negative bacteria isolated from retail poultry meat in the UK and Ireland. Int J Food Microbiol. 2014; 2(179):24-32. doi: 10.1016/j.ijfoodmicro.2014.03.019 [DOI:10.1016/j.ijfoodmicro.2014.03.019] [PMID]
6. Soltani Nezhad S, Rabbani Khorasgani M, Yaghoobi MM, Emtiazi G. Isolation of Zinc Oxide (ZnO) nanoparticles resistant Pseudomonas strains from soil and investigation of Zinc resistance genes. BJM. 2014; 3(11):99-108. [DOI:10.1007/s11274-013-1481-3] [PMID]
7. Fortner JD, Lyon DY, Sayes CM, Boyd AM, Falkner JC, Hotze EM, et al. C60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 2005; 39(11):4307-16. [DOI:10.1021/es048099n] [PMID]
8. Balamurugan B, Mehta B. Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films. 2001; 396(1):90-6. [DOI:10.1016/S0040-6090(01)01216-0]
9. Park J, Lee Y, Jun K, Baeg JO. Chemical synthesis and characterization of highly oil dispersed MgO nanoparticles. JIEC. 2006; 12(6):882.
10. Shi LE, Xing L, Hou B, Ge H. Inorganic nano mental oxides used as anti-microorganism agents for pathogen control. In A. Mende-Vilas editor; Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Badajoz: Formatex Research Center; 2010.
11. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim SJ. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem. 2012; 22(47): 24610-17. [DOI:10.1039/c2jm35087d]
12. Barkhordari A, Barzegar S, Hekmatimoghaddam H, Jebali A. The cytotoxic effects of SiO2 nanoparticles on human blood mononuclear cells. JSSU. 2012, 20(1): 10-18. (persian)
13. Lai JC, Lai MB, Jandhyam S, Dukhande VV, Dukhande VV, Bhushan A, et al. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts . Int J Nanomed. 2008; 3(4):533- 45. [DOI:10.2147/IJN.S3234] [PMID] [PMCID]
14. Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol. 2011; 27(5):333-42. doi: 10.1007/s10565-011-9191-9 [DOI:10.1007/s10565-011-9191-9] [PMID]
15. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere. 2008; 71(7):1308-16. doi: 10.1016/j.chemosphere.2007.11.047 [DOI:10.1016/j.chemosphere.2007.11.047] [PMID]
16. Zhang L, Jiang Y, Ding Y, Daskalakis N, Jeuken L, Poveyet M, et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli. J. Nanopart. Res. 2010; 12(5):1625-1636. [DOI:10.1007/s11051-009-9711-1]
17. Gurr JR, Wang AS, Chen CH, Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005; 213(1):66-73. [DOI:10.1016/j.tox.2005.05.007] [PMID]
18. Reeves JF, Davies SJ, Dodd NJ, Jha AN. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res. 2008; 640(1):113-122. doi: 10.1016/j.mrfmmm.2007.12.010 [DOI:10.1016/j.mrfmmm.2007.12.010] [PMID]
19. Shetty RC. Potential pitfalls of nanotechnology in its applications to medicine: immune incompatibility of nanodevices. Med Hypotheses. 2005; 65(5):998-9. [DOI:10.1016/j.mehy.2005.05.022] [PMID]
20. Ruden S, Hilpert K, Berditsch M, Wadhwani P, Ulrich AS. Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother. 2009; 53(8):3538-40. doi: 10.1128/AAC.01106-08 [DOI:10.1128/AAC.01106-08] [PMID] [PMCID]
21. Te Dorsthorst D, Verweij P, Meis J, Punt NC, Mouton JW. Comparison of fractional inhibitory concentration index with response surface modeling for characterization of in vitro interaction of antifungals against itraconazole-susceptible and-resistant Aspergillus fumigatus isolates. Antimicrob Agents Chemother. 2002; 46(3):702-7. [DOI:10.1128/AAC.46.3.702-707.2002] [PMID] [PMCID]
22. Mirhosseini M, Emtiazi G. Optimisation of Enterocin A Production on a Whey-Based Substrate. World Appl Sci J. 2011; 14(10):1493-9.
23. Mirhosseini M, Afzali M. Investigation into the antibacterial behavior of suspensions of magnesium oxide nanoparticles in combination with nisin and heat against Escherichia coli and Staphylococcus aureus in milk. Food Cont. 2016; 68:208-15. doi: 10.1016/j.foodcont.2016.03.048 [DOI:10.1016/j.foodcont.2016.03.048]
24. Mirhosseini M, Firouzabadi FB. Antibacterial activity of zinc oxide nanoparticle suspensions on food‐borne pathogens. Int J Dairy Technol. 2013; 66(2):291-5. [DOI:10.1111/1471-0307.12015]
25. Jafari A, Ghane M, Arastoo S. Synergistic antibacterial effects of nano zinc oxide combined with silver nanocrystales. Afr J Microbiol Res. 2011; 5(30):5465-73. [DOI:10.5897/AJMR11.392]
26. Kimiaee Sadr M, Mirhosseini M, Rahimi G. Effects of combination of magnesium and zinc oxide nanoparticles and heat on Escherichia coli and Staphylococcus aureus bacteria in milk. NMJ. 2016; 3(1):49-56.
27. Tiwari DK, Behari J, Sen P. Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach. Curr Sci. 2008; 95(5):647-655.
28. Torabi Zarchi T, Mirhosseini M. Investigation of combination effect of magnesium oxide and iron oxide nanoparticles on the growth and morphology of the bacteria Staphylococcus aureus and Escherichia coli in juice. J Shahid Sadoughi Univ Med Sci. 2017; 24(11):924-37.
29. Mirhosseini M, Houshmand Marvasti S. Antibacterial activities of copper oxide nanoparticle in combination with nisin and ultrasound against foodborne pathogenes. Iran J Med Microbial. 2017; 11(5):125-35.
30. Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial Efficacy of Zinc Oxide Quantum Dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009; 74(1):M46-52. doi: 10.1111/j.1750-3841.2008.01013.x [DOI:10.1111/j.1750-3841.2008.01013.x] [PMID]
31. Jin T, He YP. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res. 2011; 13(12):6877-85. [DOI:10.1007/s11051-011-0595-5]
32. Klevay LM. Lack of a recommended dietary allowance for copper may be hazardous to your health. J Am Coll Nutr. 1998; 17(4):322-6. [DOI:10.1080/07315724.1998.10718769] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc