year 13, Issue 3 (July - August 2019)                   Iran J Med Microbiol 2019, 13(3): 175-179 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Angaali N, Apparao Patil M, Dharma Teja V. Detection of Mycobacterium tuberculosis - Microscopy to Molecular Techniques at the Tertiary Care Hospital in Telangana. Iran J Med Microbiol 2019; 13 (3) :175-179
1- Department of Microbiology, Nizams Institute of Medical Sciences, Panjagutta, Hyderabad, India ,
2- Department of Microbiology, Nizams Institute of Medical Sciences, Panjagutta, Hyderabad , India
3- Department of Microbiology, Nizams Institute of Medical Sciences, Panjagutta, Hyderabad, India
Abstract:   (5143 Views)
Background and Aims: Tuberculosis kills more than 1 million people every year, most of them in low-income and middle-income countries. An understanding of the trends in tuberculosis incidence, prevalence, and mortality s crucial to track the success of tuberculosis control programs. Microbiological diagnosis of diseases caused by Mycobacteria should be fast and effective to prevent contagions and optimize the management of infections.
Materials and Methods: A total of 1412 clinical pulmonary and extra pulmonary specimens were studied from January 2017 to December 2017 at Nizam's Institute of Medical Sciences, Hyderabad. All specimens were processed according to standard operating procedures. All the specimens were subjected to microscopy, culture, GeneXpert.
Results: Among 1412 samples received 813 were males (57.6%) and 599 females (42.4%). Among these 818 (57.9%) were pulmonary samples and 594 extra pulmonary samples. Mycobacterium prevalence was (21.6%) out of which Mycobacterium tuberculosis was found in 18.3% and Non tuberculous Mycobacteria (3.25%). The contamination rate was 2.6% (37 out of 1412). Among the positives, the most common affected age group was 21-30 yrs (22.2%). About 64 (4.53%) were smear positive. A total of 200 isolates (14.16%) were recovered by at least one culture LJ medium or BacT Alert 3D system. MTB was recovered in 216 (15.29%) by GeneXpert. MDRTB was detected in 8 (3.7%) by GeneXpert.
Conclusion: M. tuberculosis complex is responsible for immense worldwide morbidity and mortality. Delays in diagnosis may postpone administration of appropriate treatment and be detrimental to patient outcomes. Since traditional culture methods are slow, newer molecular techniques allow more rapid and sensitive laboratory diagnosis of tuberculosis.
Full-Text [PDF 659 kb]   (1615 Downloads) |   |   Full-Text (HTML)  (1596 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2019/05/21 | Accepted: 2019/11/16 | ePublished: 2019/11/22

1. Atterbury RJ, Dillon E, Swift C, Connerton PL, Frost JA, Dodd CER, et al. Correlation of Campylobacter bacteriophage with reduced presence of hosts in broiler chicken ceca. Appl Environ Microbiol. 2005; 71(8):4885-7. [DOI:10.1128/AEM.71.8.4885-4887.2005] [PMID] [PMCID]
2. Muth, M K, Fahimi M, Karns SA. Analysis of Salmonella control performance in U.S. young chicken slaughter and pork slaughter establishments. J of Food Protec. 2009; 72(1):6-13. [DOI:10.4315/0362-028X-72.1.6] [PMID]
3. Motarjemi Y, Moy GG, Jooste PJ, Anelich LE. Food Safety Management. In: Motarjemi Y, Lelieveld H (Eds). San Diego: Academic Press; 2014. [DOI:10.1016/B978-0-12-381504-0.00041-X]
4. Hosseini Jazani N, Hadizadeh O, Farzaneh H, Moloudizargari M. Synergistic antibacterial effects of β- Chloro- L- alanine and phosphomycin on urinary tract isolates of E. coli. Bio J Microbiol. 2013; 1(4):1- 6.
5. Hill B, Smythe B, Lindsay D, Shepherd J. Microbiology of raw milk in New Zealand. Int J Food Microbiol. 2012; 157(2):305-308. [DOI:10.1016/j.ijfoodmicro.2012.03.031] [PMID]
6. Kutter E, Sulakvelidze A (Eds). Bacteriophages: Boca Raton: CRC Press; 2005; 1-5. [DOI:10.1201/9780203491751]
7. World Health Organization. The FTY eighth world health assembly. Geneva: WHO; 2005.
8. World Health Organization. Food safety & food-borne illness. fact sheet no. 237 (reviewed March 2007). Geneva: WHO; 2007.
9. Steinbacher S, Baxa U, Miller S, Weintraub A, Seckler R, Huber R. Crystal structure of phage P22 tails pike protein complexed with Salmonella sp. antigen receptors. Proc Natl Acad Sci USA. 1996; (93):10584-8. [DOI:10.1073/pnas.93.20.10584] [PMID] [PMCID]
10. Kutateladze M, Adamia R. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 2010; (28):591-5. [DOI:10.1016/j.tibtech.2010.08.001] [PMID]
11. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis. 2011; 17(1):7-15. [DOI:10.3201/eid1701.P11101] [PMID]
12. Pourmahmoodi A, Mohammadi J, Mirzai A, Momeni Negad M, Afshar R. Epidemiological study of traditional ice cream in Yasuj. Armaghan Danesh. 2002; 8(29):59-65. [Persian]
13. Whichard JM, Sriranganathan N, Pierson FW. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquidculture and on chicken frankfurters. J of Food Prot. 2003; (66):220-5. [DOI:10.4315/0362-028X-66.2.220] [PMID]
14. Ranjbar M, Sharifiyan A, Shabani Sh, Amin Afshar M. Antimicrobial effect of garlic extract Staphylococcus aureus and Escherichia coli bacteria in a cook ready chicken to meal model. Food Technol Nutr. 2014; 11(4):57-68.
15. Zare1 L, Shenagari M, Mirzaei MKH, Mojtahedi A. Isolation of lytic phages against pathogenic E.coli isolated from diabtic ulcers. Iran J Med Microbiol. 2018; 11(2):34-41.
16. Borysowski J, Weberdabrowska B, Gorski A. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med. 2006; (231):366-77. [DOI:10.1177/153537020623100402] [PMID]
17. Vonasek E, Phuong L, Nitin N. Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydro. 2014; (37):7-13. [DOI:10.1016/j.foodhyd.2013.09.017]
18. Soltan Dallal MM, Imeni SM, Nikkhahi F, Rajabi Z, Salas SP. Isolation of E. Coli bacteriophage from raw sewage and comparing its antibacterial effect with ceftriaxone antibiotic. Int J Adv Biotechnol Res. 2016; 7(3):385-91.
19. Hungaro HM, Mendonca RCS, Gouvea DM, Vanetti MCD, Pinto CLD. Use of bacteriophages to reduce Salmonella in chicken skin in comparison with chemical agents. Food Res Int. 2013; (52):75-81. [DOI:10.1016/j.foodres.2013.02.032]
20. Anany H, Chen W, Pelton R, Griffiths MW. Biocontrol of Listeria monocytogenes and Escherichia Coli O157: H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol. 2011; (77):6379-87. [DOI:10.1128/AEM.05493-11] [PMID] [PMCID]
21. Hagens S, Loessner MJ. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Current Pharma Biotech. 2010; (11): 58-68. [DOI:10.2174/138920110790725429] [PMID]
22. Hooton S, Atterbury RJ, Connerton IF. Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. International Journal of Food Microbiology . 2011; (151): 157-163. [DOI:10.1016/j.ijfoodmicro.2011.08.015] [PMID]
23. Bigwood T, Hudson JA, Billington C. Influence of host and bacteriophage concentrations on the inactivation of food-borne pathogenic bacteria by two phages. FEMS microbiol letters.2009; 291: 59-64. [DOI:10.1111/j.1574-6968.2008.01435.x] [PMID]
24. Greer GG. Bacteriophage control of foodborne bacteria. J of Food Prot. 2005; (68): 1334-1334 [DOI:10.4315/0362-028X-68.5.1102] [PMID]
25. Merabishvili M, Pirnay J, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. 2009; PloS one 4, e4944. [DOI:10.1371/journal.pone.0004944] [PMID] [PMCID]
26. Carvalho CM, Santos SB, Kropinski AM, Ferreira EC, Azeredo J. Phages as therapeutic tools to control major foodborne pathogens: Campylobacter and Salmonella, In Bacteriophages. 2012. Croatia: InTech, pp 179-214.
27. Singh V, Jain P, Dahiya S. Isolation and characterization of bacteriophage from waste water against E.coli, a food born pathogen. Microbiol Biotech. 2016; (1):163-70.
28. Jann K, Schmidt G, Wallenfels B. Isolation and Characterization of Escherichia coli bacteriophage Ω 8 specific for E. coli strains belonging to sero-group Ω 8. General Microbiol. 1971; (67):289-97. [DOI:10.1099/00221287-67-3-289] [PMID]
29. Beheshti Maal K, Soleimani Deldan A, Salmanizadeh SH. Isolation and identification of two novel Escherichia Coli bacteriophages and their application in wastewater treatment and coliform's phage therapy. Jundishapur J Microbiol. 2015; 8(3):e14945. [DOI:10.5812/jjm.14945] [PMID] [PMCID]
30. Chai Q, Dandan W, Liu F, Song F, Tang X, Cao Y, et al. Therapy potential of tailless bacteriophage ΦHN161 and its ability in modulating inflammation caused by bacterial disease. Vet Med Open. 2016; 1(2):36-42. 31. [DOI:10.17140/VMOJ-1-107]
31. Hagens S, Loessner MJ. Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol. 2010; (11):58-68. [DOI:10.2174/138920110790725429] [PMID]
32. FiorentinL, Vieira ND, Barioni Junior W. Use of lytic bacteriophages to reduce Salmonella Enteritidis in Experimentally Contaminated Chicken Cuts. Br J Poultry Sci. 2005; 7(4):255-60. [DOI:10.1590/S1516-635X2005000400010]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc