year 1, Issue 1 (Spring 2007)                   Iran J Med Microbiol 2007, 1(1): 61-66 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ataee R, Mehrabi Tavana A, Safiri Z, Karami A, Izadi M, Hossaini M. Advatages of Rapid diagnosis of BacterialMeningitis By PCR in compare with Direct Microscopy and culture . Iran J Med Microbiol 2007; 1 (1) :61-66
URL: http://ijmm.ir/article-1-75-en.html
1- Department of Medical Microbiology, Faculty ofMedicine, and Molecular Biology Research Center, Baqiyatallah (a.s.) University of Medical Sciences
2- Molecular Biology Research Center, Baqiyatallah (a.s.) University of Medical Sciences
3- Department of Medical Microbiology, Faculty of Medicine, and Health Research Center, Baqiyatallah (a.s.) University of Medical Sciences
Abstract:   (18177 Views)
Background and Objectives: Acute bacterial meningitis has remained an important cause of death and neurological damages among survivors. Rapid diagnosis of bacterial meningitis is crucial for the early targeting of antimicrobial therapy. The aim of this study was to develop and appply a PCR assay for rapid diagnosis of meningitidis and to compare the results with those obtained by conventional bacteriology.
Material and methods: We assessed 150 cerebrospinal fluid (CSF) specimens from suspected patients by PCR targeting 16S rRNAgene with specefic primers for Neisseria meningitidis, Sterptococcus pneumonia and Heamophilus influenza. All speciemns were also examined by conventional bacteriology.
Results:The rapidity of diagnosis increased when bacteriological methods were combined with PCR. Of 150 speciemens tested, 10 were positive for Neisseria meningitidis in PCR. Direct microscopy and bacterial culture found 5 and 8 cases infected with this organism respectively.
Conclusion: PCR was more sensitive than direct microscopy and culture for detection of Neisseria meningitidis. However, direct microscopy may provide evidences for the quality of specimens and presence of other organisms in the samples. Wet- mount direct microscopy showed morphology and arrangements of the observed organisms that may be helpful in presumptive identification of certain bacteria such as gram negative bacilli and cocci.. Moreover, the observed organisms may be useful in correct selection of culture media in the laboratory and prescription of appropriate therapy by physicians in a quickest time.
Full-Text [PDF 172 kb]   (2967 Downloads)    
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2013/11/10 | Accepted: 2013/11/10 | ePublished: 2013/11/10

References
1. De la Rey M. Die ekonomiese waarde van embriospoeling en-oordrag. Veeplaas. 2019;10(4):74-7.
2. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell host & microbe. 2020;27(3):325-8. [DOI:10.1016/j.chom.2020.02.001] [PMID] []
3. Friedlingstein P, O'sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, et al. Global carbon budget 2020. Earth System Science Data. 2020;12(4):3269-340. [DOI:10.5194/essd-12-3269-2020]
4. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International journal of infectious diseases. 2020;94:91-5. [DOI:10.1016/j.ijid.2020.03.017] [PMID] []
5. Huang Q, Wu X, Zheng X, Luo S, Xu S, Weng J. Targeting inflammation and cytokine storm in COVID-19. Pharmacological Research. 2020;159:105051. [DOI:10.1016/j.phrs.2020.105051] [PMID] []
6. Liu Y-C, Kuo R-L, Shih S-R. COVID-19: The first documented coronavirus pandemic in history. Biomedical journal. 2020;43(4):328-33. [DOI:10.1016/j.bj.2020.04.007] [PMID] []
7. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Military medical research. 2020;7(1):1-10. [DOI:10.1186/s40779-020-00240-0] [PMID] []
8. Lacina L, Brábek J, Král V, Kodet O, Smetana Jr K. Interleukin-6: A molecule with complex biological impact in cancer. 2019.
9. Chen X, Tian J, Su GH, Lin J. Blocking IL-6/GP130 signaling inhibits cell viability/proliferation, glycolysis, and colony forming activity in human pancreatic cancer cells. Current cancer drug targets. 2019;19(5):417-27. [DOI:10.2174/1568009618666180430123939] [PMID] []
10. Han H, Ma Q, Li C, Liu R, Zhao L, Wang W, et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerging microbes & infections. 2020;9(1):1123-30. [DOI:10.1080/22221751.2020.1770129] [PMID] []
11. Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nature reviews Clinical oncology. 2018;15(4):234-48. [DOI:10.1038/nrclinonc.2018.8] [PMID] []
12. Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, et al. IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget. 2017;8(13):20741. [DOI:10.18632/oncotarget.15119] [PMID] []
13. Aqel S, Kraus E, Jena N, Kumari V, Granitto M, Mao L, et al. Novel small molecule IL-6 inhibitor suppresses autoreactive Th17 development and promotes Treg development. Clinical & Experimental Immunology. 2019;196(2):215-25. [DOI:10.1111/cei.13258] [PMID] []
14. Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nature medicine. 2020;26(10):1636-43. [DOI:10.1038/s41591-020-1051-9] [PMID] []
15. Saleh A, Sultan A, Elashry MA, Farag A, Mortada MI, Ghannam MA, et al. Association of TNF-α G-308 a promoter polymorphism with the course and outcome of COVID-19 patients. Immunological investigations. 2022;51(3):546-57. [DOI:10.1080/08820139.2020.1851709] [PMID] []
16. Feldmann M, Maini RN. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nature medicine. 2003;9(10):1245-50. [DOI:10.1038/nm939] [PMID]
17. Cheng F, Murray JL, Zhao J, Sheng J, Zhao Z, Rubin DH. Systems biology-based investigation of cellular antiviral drug targets identified by gene-trap insertional mutagenesis. PLoS computational biology. 2016;12(9):e1005074. [DOI:10.1371/journal.pcbi.1005074] [PMID] []
18. Lo CY, Tsai TL, Lin CN, Lin CH, Wu HY. Interaction of coronavirus nucleocapsid protein with the 5′‐and 3′‐ends of the coronavirus genome is involved in genome circularization and negative‐strand RNA synthesis. The FEBS journal. 2019;286(16):3222-39. [DOI:10.1111/febs.14863] [PMID] []
19. Kim J-M, Chung Y-S, Jo HJ, Lee N-J, Kim MS, Woo SH, et al. Identification of coronavirus isolated from a patient in Korea with COVID-19. Osong public health and research perspectives. 2020;11(1):3. [DOI:10.24171/j.phrp.2020.11.1.02] [PMID] []
20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic acids research. 2012;41(D1):D991-D5. [DOI:10.1093/nar/gks1193] [PMID] []
21. Reinhardt J, Landsberg J, Schmid-Burgk JL, Ramis BB, Bald T, Glodde N, et al. MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy. Cancer research. 2017;77(17):4697-709. [DOI:10.1158/0008-5472.CAN-17-0395] [PMID]
22. Gee J, Marquez P, Su J, Calvert GM, Liu R, Myers T, et al. First month of COVID-19 vaccine safety monitoring-United States, December 14, 2020-January 13, 2021. Morbidity and mortality weekly report. 2021;70(8):283. [DOI:10.15585/mmwr.mm7008e3] [PMID] []
23. Kanehisa M, Goto S. Comprehensive gene and pathway analysis of cervical cancer progression. Nucleic Acids Res. 2000;28:27-30. [DOI:10.1093/nar/28.1.27] [PMID] []
24. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics-2015 update: a report from the American Heart Association Circulation. 2015;131(4):e29-e322.
25. Sklarczyk C. Assessing effects of habitat amount vs. configuration on avian diversity in managed pine landscapes: Mississippi State University; 2021.
26. Xu L, Mao Y, Chen G. Risk factors for 2019 novel coronavirus disease (COVID-19) patients progressing to critical illness: a systematic review and meta-analysis. Aging (Albany NY). 2020;12(12):12410. [DOI:10.18632/aging.103383] [PMID] []
27. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive care medicine. 2020;46(4):586-90. [DOI:10.1007/s00134-020-05985-9] [PMID] []
28. Zhang X, Zhang Y, Qiao W, Zhang J, Qi Z. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. International immunopharmacology. 2020;86:106749. [DOI:10.1016/j.intimp.2020.106749] [PMID] []
29. Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. Journal of medical virology. 2021;93(1):250-6. [DOI:10.1002/jmv.26232] [PMID] []
30. Coomes EA, Haghbayan H. Interleukin‐6 in COVID‐19: a systematic review and meta‐analysis. Reviews in medical virology. 2020;30(6):1-9. [DOI:10.1002/rmv.2141] [PMID] []
31. Cai J, Sun W, Huang J, Gamber M, Wu J, He G. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerging infectious diseases. 2020;26(6):1343. [DOI:10.3201/eid2606.200412] [PMID] []
32. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine. 2020;46(5):846-8. [DOI:10.1007/s00134-020-05991-x] [PMID] []
33. Dhall A, Patiyal S, Sharma N, Usmani SS, Raghava GP. Computer-aided prediction and design of IL-6 inducing peptides: IL-6 plays a crucial role in COVID-19. Briefings in bioinformatics. 2021;22(2):936-45. [DOI:10.1093/bib/bbaa259] [PMID] []
34. Lynch MR, Tang J. COVID-19 and kidney injury. RI Med J. 2020;103(8):24-8.
35. Woo PC, Lau SK, Lam CS, Tsang AK, Hui S-W, Fan RY, et al. Discovery of a novel bottlenose dolphin coronavirus reveals a distinct species of marine mammal coronavirus in Gammacoronavirus. Journal of Virology. 2014;88(2):1318-31. [DOI:10.1128/JVI.02351-13] [PMID] []
36. Li Y, Hou G, Zhou H, Wang Y, Tun HM, Zhu A, et al. Multi-platform omics analysis reveals molecular signature for COVID-19 pathogenesis, prognosis and drug target discovery. Signal transduction and targeted therapy. 2021;6(1):155. [DOI:10.1038/s41392-021-00508-4] [PMID] []
37. Xiao N, Nie M, Pang H, Wang B, Hu J, Meng X, et al. Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nature Communications. 2021;12(1):1618. [DOI:10.1038/s41467-021-21907-9] [PMID] []
38. Sagulkoo P, Plaimas K, Suratanee A, Vissoci Reiche EM, Maes M. Immunopathogenesis and immunogenetic variants in COVID-19. Current Pharmaceutical Design. 2022;28(22):1780-97. [DOI:10.2174/1381612828666220519150821] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc