year 19, Issue 2 (March - April 2025)                   Iran J Med Microbiol 2025, 19(2): 5-5 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jabir Kazar A, Noory Hussein A. Molecular Characterization of Virulence Genes in Serratia marcescens Isolates from Clinical Cases in Al-Diwaniyah, Iraq: A Cross-Sectional Study. Iran J Med Microbiol 2025; 19 (2) :5-5
URL: http://ijmm.ir/article-1-2638-en.html
1- Department of Biology, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq
2- Department of Biology, College of Education, University of Al-Qadisiyah, Al-Diwaniyah, Iraq , azhar.almousawi@qu.edu.iq
Abstract:   (69 Views)

Background and Aims: Serratia marcescens (S. marcescens) is a Gram-negative, facultative anaerobic bacterium belonging to the Serratia genus of clinical importance. It is an opportunistic pathogen associated with various human infections, including pneumonia, meningitis, wound and burn infections, respiratory tract infections, urinary tract infections, bacteremia, and eye infections. The purpose of this study was to assess the frequency of S. marcescens in different clinical infections and evaluate the major virulence genes responsible for its pathogenicity.
Materials and Methods: Clinical specimens (n=200) were collected from urinary, wound, burn, and eye infections from patients referred to Al-Diwaniyah Teaching Hospital and private clinics of Al-Diwaniyah Governorate from (March 11 to August 20, 2024). Bacterial isolates were initially identified by cultural, microscopic, and biochemical examinations and confirmed by the VITEK system. Molecular characterization was done by PCR amplification of PhlA, ShlA, and FlhD virulence genes. The 16S rRNA gene was identified as control. The validated isolates were deposited in NCBI GenBank.
Results: Twenty S. marcescens isolates were isolated from 200 samples: 15 (75%) from urinary tract infections, 3 (15%) from wounds and burns, and 2 (10%) from eye infections. FlhD gene was found in 100%, PhlA in 80%, and ShlA in 35% of the isolates.
Conclusion: The study emphasizes that the identification of major virulence determinants such as FlhD , PhlA, and ShlA enhances our understanding of Serratia marcescens pathogenicity in the studied region and provides a molecular basis for future epidemiological and clinical research.

     
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2025/03/16 | Accepted: 2025/05/26 | ePublished: 2025/06/6

References
1. Hanczvikkel A, Tóth Á, Németh IA, Bazsó O, Závorszky L, Buzgó L, et al. Nosocomial outbreak caused by disinfectant-resistant Serratia marcescens in an adult intensive care unit, Hungary, February to March 2022. Eurosurveillance. 2024;29(26):2300492. [DOI:10.2807/1560-7917.ES.2024.29.26.2300492] [PMID] [PMCID]
2. Kamali A, Ferguson D, Dowless H, Ortiz N, Mukhopadhyay R, Schember C, et al. Outbreak of invasive Serratia marcescens among persons incarcerated in a state prison, California, USA, March 2020-December 2022. Emerg Infect Dis. 2024;30(Suppl 1):S41. [DOI:10.3201/eid3013.230801] [PMID] [PMCID]
3. Maitz J, Merlino J, Rizzo S, McKew G, Maitz P. Burn wound infections microbiome and novel approaches using therapeutic microorganisms in burn wound infection control. Adv Drug Deliv Rev. 2023;196:114769. [DOI:10.1016/j.addr.2023.114769] [PMID]
4. Safari MS, Mohabatkar H, Behbahani M. Novel surface biochemical modifications of urinary catheters to prevent catheter‐associated urinary tract infections. J Biomed Mater Res - B Appl Biomater. 2024;112(2):e35372. [DOI:10.1002/jbm.b.35372] [PMID]
5. Nedeljković M, Sastre DE, Sundberg EJ. Bacterial flagellar filament: a supramolecular multifunctional nanostructure. Int J Mol Sci. 2021;22(14):7521. [DOI:10.3390/ijms22147521] [PMID] [PMCID]
6. Pan X, Tang M, You J, Liu F, Sun C, Osire T, et al. Regulator RcsB controls prodigiosin synthesis and various cellular processes in Serratia marcescens JNB5-1. Appl Environ Microbiol. 2021;87(2):e02052-20. [DOI:10.1128/AEM.02052-20] [PMID] [PMCID]
7. Liébana-Rodríguez M, Portillo-Calderón I, Fernández-Sierra MA, Delgado-Valverde M, Martín-Hita L, Gutiérrez-Fernández J. Nosocomial outbreak caused by Serratia marcescens in a neonatology intensive care unit in a regional hospital. Analysis and improvement proposals. Enfermedades infecciosas y microbiologia clinica (English ed.). 2024;42(6):286-93. [DOI:10.1016/j.eimce.2023.04.019] [PMID]
8. Sader HS, Castanheira M, Streit JM, Carvalhaes CG, Mendes RE. Frequency and antimicrobial susceptibility of bacteria causing bloodstream infections in pediatric patients from United States (US) medical centers (2014-2018): Therapeutic options for multidrug-resistant bacteria. Diagn Microbiol Infect Dis. 2020;98(2):115108. [DOI:10.1016/j.diagmicrobio.2020.115108] [PMID]
9. Rasheed MN, Mohaisen SH, Khairiyah Jaber AK. Isolation, Molecular Identification and Influence of Incubation Period on Hemolysine Gene Expression in Serratia Marcescens Local Isolates. Int J Nat Eng Sci. 2020;14(1):3-7.
10. Heu K, Romoli O, Schönbeck JC, Ajenoe R, Epelboin Y, Kircher V, et al. The effect of secondary metabolites produced by Serratia marcescens on Aedes aegypti and its microbiota. Front Microbiol. 2021;12:645701. [DOI:10.3389/fmicb.2021.645701] [PMID] [PMCID]
11. Roy S, Wangkheimayum J, Choudhury SR, Das BJ, Mazumder PB, Bhattacharjee A. Occurrence of virulent Serratia marcescens with co-existing antibiotic resistance determinants in ready-to-eat food samples. J Microbiol Infect Dis. 2023;13(3):118. [DOI:10.5455/JMID.2023.v13.i3.3]
12. Salim WM, Al-bayati LH. Molecular detection of Serratia marcescens isolated from different clinical cases in wasit province, Iraq. J Adv Res Med Health Sci. 2023;2208:2425. [DOI:10.53555/cjp73776]
13. Gauba A, Rahman KM. Evaluation of antibiotic resistance mechanisms in gram-negative bacteria. Antibiotics. 2023;12(11):1590. [DOI:10.3390/antibiotics12111590] [PMID] [PMCID]
14. Zivkovic Zaric R, Zaric M, Sekulic M, Zornic N, Nesic J, Rosic V, et al. Antimicrobial treatment of Serratia marcescens invasive infections: systematic review. Antibiotics. 2023;12(2):367. [DOI:10.3390/antibiotics12020367] [PMID] [PMCID]
15. Ballaben AS, de Almeida OG, Ferreira JC, de Oliveira Garcia D, Doi Y, Ernst RK, et al. Phenotypic and in silico characterization of carbapenem-resistant Serratia marcescens clinical strains. J Glob Antimicrob Resist. 2025;42:105-12. [DOI:10.1016/j.jgar.2025.02.013] [PMID]
16. Mnif S, Jardak M, Bouizgarne B, Aifa S. Prodigiosin from Serratia: Synthesis and potential applications. Asian Pac J Trop Biomed. 2022;12(6):233-42. [DOI:10.4103/2221-1691.345515]
17. Rodríguez-Villodres Á, Ortiz de la Rosa JM, Valencia-Martin R, Jiménez Parrilla F, Martín-Gutiérrez G, Márquez Patiño N, et al. Implementation of a PCR-based strategy to control an outbreak by Serratia marcescens in a Neonatal Intensive Care Unit. Ann Clin Microbiol Antimicrob. 2023;22(1):108. [DOI:10.1186/s12941-023-00657-0] [PMID] []
18. Tavares-Carreon F, De Anda-Mora K, Rojas-Barrera IC, Andrade A. Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: a literature review. PeerJ. 2023 Jan 5;11:e14399. [DOI:10.7717/peerj.14399] [PMID] [PMCID]
19. Hamzah AS, Awayid HS. Analysis of virulence genes sequencing of Serratia marcescens in iraqi hospitals. Cell Mol Biol. 2023;69(11):162-6. [DOI:10.14715/cmb/2023.69.11.24] [PMID]
20. Ferreira RL, Rezende GS, Damas MS, Oliveira-Silva M, Pitondo-Silva A, Brito MC, et al. Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Front Microbiol. 2020;11:956. [DOI:10.3389/fmicb.2020.00956] [PMID] [PMCID]
21. González GM, Andrade A, Villanueva-Lozano H, Campos-Cortés CL, Becerril-García MA, Montoya AM, et al. Comparative analysis of virulence profiles of Serratia marcescens isolated from diverse clinical origins in Mexican patients. Surg Infect. 2020;21(7):608-12. [DOI:10.1089/sur.2020.029] [PMID]
22. Abbas HA, Hegazy WA. Repurposing anti-diabetic drug "Sitagliptin" as a novel virulence attenuating agent in Serratia marcescens. PLoS One. 2020;15(4):e0231625. [DOI:10.1371/journal.pone.0231625] [PMID] [PMCID]
23. Cosimato I, Santella B, Rufolo S, Sabatini P, Galdiero M, Capunzo M, et al. Current epidemiological status and antibiotic resistance profile of Serratia marcescens. Antibiotics. 2024;13(4):323. [DOI:10.3390/antibiotics13040323] [PMID] [PMCID]
24. Aggarwal C, Paul S, Tripathi V, Paul B, Khan MA. Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. J Invertebr Pathol. 2017;143:115-23. [DOI:10.1016/j.jip.2016.12.004] [PMID]
25. Salini R, Pandian SK. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog Dis. 2015;73(6):ftv038. [DOI:10.1093/femspd/ftv038] [PMID]
26. Sciesielski LK, Osang LK, Dinse N, Weber A, Bührer C, Kola A, et al. Validation of a new PCR-based screening method for prevention of Serratia marcescens outbreaks in the neonatal intensive care unit. Neonatol. 2023;120(2):176-84. [DOI:10.1159/000526836] [PMID]
27. Obaid NA, Abuhussain SA, Mulibari KK, Alshanqiti F, Malibari SA, Althobaiti SS, et al. Antimicrobial-resistant pathogens related to catheter-associated urinary tract infections in intensive care units: A multi-center retrospective study in the Western region of Saudi Arabia. Clin Epidemiol Glob Health. 2023;21:101291. [DOI:10.1016/j.cegh.2023.101291]
28. Raheem IA, Abdul FR, Subhi HT. The Role of Immune Defense in Serratia marcescens Nosocomial Infections. ARO (Sci J Koya Univ). 2025;13(1):34-41. [DOI:10.14500/aro.11819]
29. Liu JH, Lai MJ, Ang S, Shu JC, Soo PC, Horng YT, et al. Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J Biomed Sci. 2000;7(6):475-83. https://doi.org/10.1007/BF02253363 [DOI:10.1159/000025483] [PMID]
30. Pan X, Tang M, You J, Osire T, Sun C, Fu W, et al. PsrA is a novel regulator contributes to antibiotic synthesis, bacterial virulence, cell motility and extracellular polysaccharides production in Serratia marcescens. Nucleic Acids Res. 2022;50(1):127-48. [DOI:10.1093/nar/gkab1186] [PMID] [PMCID]
31. Shimuta K, Ohnishi M, Iyoda S, Gotoh N, Koizumi N, Watanabe H. The hemolytic and cytolytic activities of Serratia marcescens phospholipase A (PhlA) depend on lysophospholipid production by PhlA. BMC Microbiol. 2009;9(1):261. [DOI:10.1186/1471-2180-9-261] [PMID] [PMCID]
32. Stella NA, Brothers KM, Shanks RM. Differential susceptibility of airway and ocular surface cell lines to FlhDC-mediated virulence factors PhlA and ShlA from Serratia marcescens. J Med Microbiol. 2021;70(2):001292. [DOI:10.1099/jmm.0.001292] [PMID] [PMCID]
33. Lin CS, Horng JT, Yang CH, Tsai YH, Su LH, Wei CF, et al. RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens. Infect Immun. 2010;78(11):4870-81. [DOI:10.1128/IAI.00661-10] [PMID] [PMCID]
34. Ulhuq FR, Mariano G. Bacterial pore-forming toxins. Microbiol. 2022;168(3):001154. [DOI:10.1099/mic.0.001154] [PMID] [PMCID]
35. Shahid A, Rafiq A. Effects of Staphylococcus aureus hemolysin toxins on blood cells and association with skin and soft tissue infections. Abasyn J Life Sci. 2021;4(1):152-60. [DOI:10.34091/AJLS.4.1.18]
36. Williams DJ, Grimont PA, Cazares A, Grimont F, Ageron E, Pettigrew KA, et al. The genus Serratia revisited by genomics. Nat Commun. 2022;13(1):5195. [DOI:10.1038/s41467-022-32929-2] [PMID] [PMCID]
37. Francés-Cuesta C, Sánchez-Hellín V, Gomila B, González-Candelas F. Is there a widespread clone of Serratia marcescens producing outbreaks worldwide?. J Hosp Infect. 2021;108:7-14. [DOI:10.1016/j.jhin.2020.10.029] [PMID]
38. Cosimato I, Santella B, Rufolo S, Sabatini P, Galdiero M, Capunzo M, et al. Current epidemiological status and antibiotic resistance profile of Serratia marcescens. Antibiotics. 2024;13(4):323. [DOI:10.3390/antibiotics13040323] [PMID] [PMCID]
39. Khalil MI, Al-Tobje MA, Faisal RM. Molecular detection of virulence genes of Serratia marcescens isolates from diverse clinical sources. UNEC J Eng Appl Sci. 2024;4(2):99-105. [DOI:10.61640/ujeas.2024.1210]
40. Rizi KS, Hasanzade S, Soleimanpour S, Youssefi M, Jamehdar SA, Ghazvini K, et al. Phenotypic and molecular characterization of antimicrobial resistance in clinical species of Enterobacter, Serratia, and Hafnia in Northeast Iran. Gene Rep. 2021;25:101352. [DOI:10.1016/j.genrep.2021.101352]
41. Caliskan-Aydogan O, Alocilja EC. A review of carbapenem resistance in Enterobacterales and its detection techniques. Microorganisms. 2023;11(6):1491. [DOI:10.3390/microorganisms11061491] [PMID] [PMCID]
42. Rizal NS, Neoh HM, Ramli R, Hanafiah A, Samat MN, Tan TL, Wong KK, Nathan S, Chieng S, Saw SH, Khor BY. Advantages and limitations of 16S rRNA next-generation sequencing for pathogen identification in the diagnostic microbiology laboratory: perspectives from a middle-income country. Diagnostics. 2020 Oct 14;10(10):816. [DOI:10.3390/diagnostics10100816] [PMID] [PMCID]
43. Uelze L, Grützke J, Borowiak M, Hammerl JA, Juraschek K, Deneke C, et al. Typing methods based on whole genome sequencing data. One Health Outlook. 2020;2(1):3. [DOI:10.1186/s42522-020-0010-1] [PMID] [PMCID]
44. Gambino AS, Déraspe M, Álvarez VE, Quiroga MP, Corbeil J, Roy PH, et al. Serratia marcescens SCH909 as reservoir and source of genetic elements related to wide dissemination of antimicrobial resistance mechanisms. FEMS Microbiol Lett. 2021;368(14):fnab086. [DOI:10.1093/femsle/fnab086] [PMID]
45. Kim UJ, Choi SM, Kim MJ, Kim S, Shin SU, Oh SR, et al. Hospital water environment and antibiotic use: key factors in a nosocomial outbreak of carbapenemase-producing Serratia marcescens. J Hosp Infect. 2024;151:69-78. [DOI:10.1016/j.jhin.2024.04.021] [PMID]
46. Ji B, Ye W. Prevention and control of hospital-acquired infections with multidrug-resistant organism: A review. Medicine. 2024;103(4):e37018. [DOI:10.1097/MD.0000000000037018] [PMID] [PMCID]
47. Cosimato I, Santella B, Rufolo S, Sabatini P, Galdiero M, Capunzo M, et al. Current epidemiological status and antibiotic resistance profile of Serratia marcescens. Antibiotics. 2024;13(4):323. [DOI:10.3390/antibiotics13040323] [PMID] [PMCID]
48. Liang Z, Shen J, Liu J, Sun X, Yang Y, Lv Y, et al. Prevalence and characterization of Serratia marcescens isolated from clinical bovine mastitis cases in Ningxia Hui autonomous region of China. Infection and Drug Resistance. 2023;16:2727-35. [DOI:10.2147/IDR.S408632] [PMID] [PMCID]
49. Khayyat AN, Hegazy WA, Shaldam MA, Mosbah R, Almalki AJ, Ibrahim TS, Khayat MT, Khafagy ES, Soliman WE, Abbas HA. Xylitol inhibits growth and blocks virulence in Serratia marcescens. Microorganisms. 2021;9(5):1083. [DOI:10.3390/microorganisms9051083] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc