year 19, Issue 1 (January - February 2025)                   Iran J Med Microbiol 2025, 19(1): 6-6 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

N Kadim A, A Kasim A, Mahdi Daghir G. Molecular Identification of Fungi Isolated from Root of Broad Bean (Vicia faba L.) Infected with Rot Root Disease. Iran J Med Microbiol 2025; 19 (1) :6-6
URL: http://ijmm.ir/article-1-2546-en.html
1- Department of Biology, College of Science, University of Misan, Maysan, Iraq
2- Department of Biology, College of Science, University of Misan, Maysan, Iraq , alimycol@uomisan.edu.iq
3- Department of Plant Protection, College of Agriculture, University of Misan, Maysan, Iraq
Abstract:   (51 Views)

Background and Aim: Faba bean (Vicia faba L.) is an inseparable part of the Iraqi people's food basket. Root rot disease is one of the pests causing great losses to crops. The study aimed to determine the molecular characterization of the root rot fungi isolated from the roots of broad beans in Maysan Governorate, southern Iraq.
Materials and Methods: Eight species of root rot fungi were isolated and subjected to DNA extraction and PCR assays. The sequences were submitted to GenBank and deposited using the assigned accession numbers.
Results: The study showed a match between phenotypic and molecular identification. All tested isolates produced fragments of 500–700 bp. The isolates' sequences showed 98.40 to 100% matching to the reference strain sequences in GenBank.
Myrothecium (M.) inundatum and Mucor (M.) fragilis showed 100% identity and Corynascus (C.) sepedonium, Fusarium (F.) oxysporum and Fusarium (F.) solani presented more than 99% identity. The strain C. sepedonium showed 100% identity with MZ203485.1 reference strain.
The F. oxysporum indicated 100% similarity with several strains such as OR879163.1 and OR879157.1. The F. solani showed 100% similarity with MN857747.1 and MT509567.1 strains. Macrophomina (M.) phaseolina was the closest to MT127390.1 strain. The M. fragilis showed 100% identity with many reference strains. M. inundatum revealed 100% similarity with both OP761606.1 and MK024176.1 strains, and Ovatospora (O.) pseudomollicella indicated 100% similarity with MW251835.1 and MW242833.1 strains. Rhizoctonia (R.) solani showed 100% similarity with many strains such as AF153786 and MH014991.1.
Conclusions: The PCR-RFLP assay is a favorable method for identification of the fungi causative of the root rot disease in accompany with phenotypic identification.

     
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2024/12/12 | Accepted: 2025/02/18 | ePublished: 2025/03/30

References
1. Qahtan AA, Al-Atar AA, Abdel-Salam EM, El-Sheikh MA, Gaafar AR, Faisal M. Genetic diversity and structure analysis of a worldwide collection of Faba bean (Vicia faba) genotypes using ISSR markers. Intl J Agric Biol. 2021;25(3):683-91. [DOI:10.17957/IJAB/15.1717]
2. Martineau-Côté D, Achouri A, Karboune S, L'Hocine L. Faba bean: an untapped source of quality plant proteins and bioactives. Nutrients. 2022;14(8):1541. [DOI:10.3390/nu14081541] [PMID] [PMCID]
3. Bogale GA, Mengesha M, Hadgu G. Characterization of local climate and its impact on faba bean (Vicia faba L.) yield in Central Ethiopia. Adv Meteorol. 2022;2022(1):8759596. [DOI:10.1155/2022/8759596]
4. Duchene O, Vian JF, Celette F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ. 2017;240:148-61. [DOI:10.1016/j.agee.2017.02.019]
5. Aliyi T, Birke B, Hailu A. Survey for Faba Bean (Vicia fabae L.) Fungal Diseases in Ethiopia. Results Plant Prot Res. 2021;49.
6. Yu H, Yang F, Hu C, Yang X, Zheng A, Wang Y, et al. Production status and research advancement on root rot disease of faba bean (Vicia faba L.) in China. Front Plant Sci. 2023;14:1165658. [DOI:10.3389/fpls.2023.1165658] [PMID] [PMCID]
7. Zhang Y, Li L, Guo YP, Shao Y. Impact of different planting densities on root rot and crop growth of faba bean in intercropping systems. Anhui Agric Sci Bullet. 2018;24(18):60-1.
8. Sawei A, Azzu Y, Duzan A, Abughania A. Isolation and identification of fungal diseases of broad bean (Vicia faba L.) in Ain-Zara region, Tripoli, Libya. AlQalam J Med Appl Sci. 2024:156-9.
9. Abd Al-Nabi ZJ, Kasim AA. Isolation and identification of fungi from submerged plants debris in aquatic habitats in Misan province. Periódico Tchê Química. 2020;17(36):58. [DOI:10.52571/PTQ.v17.n36.2020.74_Periodico36_pgs_58_71.pdf]
10. Rubiales D, Khazaei H. Advances in disease and pest resistance in faba bean. Theor Appl Genet. 2022;135(11):3735-56. [DOI:10.1007/s00122-021-04022-7] [PMID]
11. Abdelaziz AM, Hashem AH, El-Sayyad GS, El-Wakil DA, Selim S, Alkhalifah DH, et al. Biocontrol of soil borne diseases by plant growth promoting rhizobacteria. Trop Plant Pathol. 2023;48(2):105-27. [DOI:10.1007/s40858-022-00544-7]
12. Coque JJ, Álvarez-Pérez JM, Cobos R, González-García S, Ibáñez AM, Galán AD, et al. Advances in the control of phytopathogenic fungi that infect crops through their root system. Adv Appl Microbiol. 2020;111:123-70. [DOI:10.1016/bs.aambs.2020.01.003] [PMID]
13. Mahmoud AF, Abd El-Fatah BE. Genetic diversity studies and identification of molecular and biochemical markers associated with fusarium wilt resistance in cultivated faba bean (Vicia faba). Plant Pathol J. 2020;36(1):11. [DOI:10.5423/PPJ.OA.04.2019.0119] [PMID] [PMCID]
14. Billström M. Fungal identification using nanopore sequencing of the Internal Transcribed Spacer region [Internet]. 2024. Available from: [https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-530695]
15. El-Dawy EG, Gherbawy YA, Hussein MA. Morphological, molecular characterization, plant pathogenicity and biocontrol of Cladosporium complex groups associated with faba beans. Sci Rep. 2021;11(1):14183. [DOI:10.1038/s41598-021-93123-w] [PMID] [PMCID]
16. Mumpuni A, Amurwanto A, Wahyono DJ. Molecular identification of coprophilous microfungi from Banyumas District, Central Java, Indonesia. Biodivers J Biol Divers. 2021;22(3):1550-7. [DOI:10.13057/biodiv/d220361]
17. Animasaun DA, Nnamdi CD, Ipinmoroti OI, Oyedeji S, Olonya EA, Krishnamurthy R, et al. Molecular identification and phylogenetic analysis of fungi contaminants associated with in vitro cultured banana based on ITS region sequence. HAYATI J Biosci. 2022;29(3):288-300. [DOI:10.4308/hjb.29.3.288-300]
18. Raja HA, Miller AN, Pearce CJ, Oberlies NH. Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod. 2017;80(3):756-70. [DOI:10.1021/acs.jnatprod.6b01085] [PMID] [PMCID]
19. Ajmera S, Rao VK, Ranipadmini V, Merugu R, Girisham S. Isolation and Molecular Characterization of Thermophilic Coprophilous Fungus Malbranchea cinnamomea GSMBKU from Goat Dung. J Pure Appl Microbiol. 2019;13(4):2227-33. [DOI:10.22207/JPAM.13.4.36]
20. Long J, Wu W, Sun S, Shao Y, Duan C, Guo Y, et al. Berkeleyomyces rouxiae is a causal agent of root rot complex on faba bean (Vicia faba L.). Front Plant Sci. 2022;13:989517. [DOI:10.3389/fpls.2022.989517] [PMID] [PMCID]
21. D'Andreano S, Cuscó A, Francino O. Rapid and real-time identification of fungi up to species level with long amplicon nanopore sequencing from clinical samples. Biol Methods Protoc. 2020;6(1):bpaa026. [DOI:10.1093/biomethods/bpaa026] [PMID] [PMCID]
22. Bhattacharyya P, Ghosh S, Mandi SS, Kumaria S, Tandon P. Genetic variability and association of AFLP markers with some important biochemical traits in Dendrobium thyrsiflorum, a threatened medicinal orchid. S Afr J Bot. 2017;109:214-22. [DOI:10.1016/j.sajb.2016.12.012]
23. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. [DOI:10.1093/molbev/msab120] [PMID] [PMCID]
24. Ali MB, Haridy AG, Mahmoud AF. Evaluation of faba bean genotypes for yield and resistance to Fusarium root rot under greenhouse and field conditions. Int J Biosci. 2019;14(2):374-85.
25. Afshari N, Hemmati R. First report of the occurrence and pathogenicity of Clonostachys rosea on faba bean. Australas Plant Pathol. 2017;46:231-4. [DOI:10.1007/s13313-017-0482-3]
26. Yones AM, Kayim M. Molecular characterization of Trichoderma spp. with biocontrol ability against faba bean chocolate spot (Botrytis cinerea Pers. ex Fr.). Plant Cell Biotechnol Mol Biol. 2021;22(51&52):52-63.
27. Manawasinghe IS, Phillips AJ, Xu J, Balasuriya A, Hyde KD, Stępień Ł, et al. Defining a species in fungal plant pathology: beyond the species level. Fungal Divers. 2021;109(1):267-82. [DOI:10.1007/s13225-021-00481-x]
28. Doveri F. Description of Chaetomium aureum, Corynascus sepedonium and Coniochaeta hansenii newly recorded from Italy and a key to coprophilous Chaetomiaceae and Coniochaetaceae. Ascomycete.org Joural. 2016;8(1):7-24.
29. Atashi Khalilabad A, Fotouhifar K. Introduction of new taxa of Dothideomycetes and Sordariomycetes associated with trees for funga of Iran. Rostaniha. 2021;22(1):104-19.
30. Rezaee S, Gharanjik S, Mojerlou S. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. J Crop Prot. 2018;7(2):161-70.
31. Attar B, Kitson JJ, Cuff JP, Howard B, Lages A, Gomez D, et al. Identifying the Fusarium species involved in foot rot disease of faba beans in the UK using a combined molecular and microbiological approach. bioRxiv. 2024:2024-10. [DOI:10.1101/2024.10.25.620281]
32. Wang J, Li C, Song P, Qiu R, Song R, Li X, et al. Molecular and biological characterization of the first mymonavirus identified in Fusarium oxysporum. Front Microbiol. 2022;13:870204. [DOI:10.3389/fmicb.2022.870204] [PMID] [PMCID]
33. Nirmaladevi D, Venkataramana M, Srivastava RK, Uppalapati SR, Gupta VK, Yli-Mattila T, et al. Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Sci Rep. 2016;6(1):21367. [DOI:10.1038/srep21367] [PMID] [PMCID]
34. Mnati MA, Dewan MM, AL-Abedy AN, Altaie A. Morphological and molecular identificationof Fusarium spp. and Macrophomina phaseolina isolated from cowpea plants (Vigna unguiculata). Int J Agric Stat Sci. 2021;17(2):719-26.
35. Khan IH, Javaid A. Mucor fragilis causing rot of Seychelles pole bean in Pakistan. Australas Plant Pathol. 2022;51(3):359-62. [DOI:10.1007/s13313-022-00859-8]
36. Almiman B. Effects of temperature and water activity on 25 de novo strains of pathogenic plant fungi in Al-Baha and Baljurashi cities in Saudi Arabia. J Umm Al-Qura Univ Appl Sci. 2024;10(2):301-12. [DOI:10.1007/s43994-023-00105-x]
37. Walther G, Wagner L, Kurzai O. Updates on the taxonomy of Mucorales with an emphasis on clinically important taxa. J Fungi. 2019;5(4):106. [DOI:10.3390/jof5040106] [PMID] [PMCID]
38. Rennberger G, Keinath AP. Stachybotriaceae on cucurbits demystified: Genetic diversity and pathogenicity of ink spot pathogens. Plant Dis. 2020;104(8):2242-51. [DOI:10.1094/PDIS-01-20-0166-RE] [PMID]
39. Chen Y, Ran SF, Dai DQ, Wang Y, Hyde KD, Wu YM, et al. Mycosphere essays 2. Myrothecium. Mycosphere. 2016;7(1):64-80. [DOI:10.5943/mycosphere/7/1/7]
40. Wang HY, Li X, Dong CB, Zhang YW, Chen WH, Liang JD, et al. Two new species of Sordariomycetes (Chaetomiaceae and Nectriaceae) from China. MycoKeys. 2024;102:301. [DOI:10.3897/mycokeys.102.114480] [PMID] [PMCID]
41. Alhussani AH, AL-Hakeem AM, Al-tememe ZA, Mahdi HF. A new species of Ovatospora pseudomollicella and Chaetomium madrasense Isolated from red wood (Sequoia sempervirens) and Teak wood (Tectona grandis) in Iraq. Teikyo Med J. 2022;45(2):6213-7.
42. Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF, et al. Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol. 2016;84:145-224. [DOI:10.1016/j.simyco.2016.11.005] [PMID] [PMCID]
43. Al-Fadhal FA, Al-Abedy AN, Alkhafije DA. Isolation and molecular identification of Rhizoctonia solani and Fusarium solani isolated from cucumber (Cucumis sativus L.) and their control feasibility by Pseudomonas fluorescens and Bacillus subtilis. Egypt J Biol Pest Control. 2019;29:1-11. [DOI:10.1186/s41938-019-0145-5]
44. Dakhil AH, Alshimaysawe UA. Morphological and molecular identification of the root and stem base rot pathogen on broad bean crop and control it using some Trichoderma biological agents. Kufa J Agric Sci. 2023;15(2):43-56. [DOI:10.36077/kjas/2023/v15i2.10323]
45. Rezaee S, Gharanjik S, Mojerlou S. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. J Crop Prot. 2018;7(2):161-70.
46. Bruce M, Stratford E, Armstrong-Cho C, Banniza S. A multiplex PCR assay for the detection of six foliar fungal pathogens of faba bean. Can J Plant Pathol. 2025:1-9. [DOI:10.1080/07060661.2024.2448672]
47. Ali MB, Haridy AG, Mahmoud AF. Evaluation of faba bean genotypes for yield and resistance to Fusarium root rot under greenhouse and field conditions. Int J Biosci. 2019;14(2):374-85.
48. Mukuma C. Morphological and molecular identification and characterization of dry bean fungal root rot pathogens in Zambia [dissertation on the Internet]. University of Nebraska-Lincoln. 2016. [cited 2025 Mar 30]. Available from: [https://core.ac.uk/download/pdf/188104599.pdf]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc