year 18, Issue 5 (September - October 2024)                   Iran J Med Microbiol 2024, 18(5): 278-286 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Aboulhassanzadeh S, Aboulhassanzadeh S, Aghazadeh H, Nikkhooy Z, Jafari B. The Effect of Bifidobacterium Longum on Expression of Hfq in Escherichia Coli O157:H7. Iran J Med Microbiol 2024; 18 (5) :278-286
URL: http://ijmm.ir/article-1-2472-en.html
1- School of Biotechnology, Faculty of Science and Health, Dublin City University, Dublin, Ireland & Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran , sobhan.aboulhassanzadeh2@mail.dcu.ie
2- Mérieux NutriSciences - Global, Advanced laboratory testing, Newbridge, Ireland & Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
3- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran & School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4- Department of Biology, Faculty of Science, Shahid Chamran University, Ahvaz, Iran
5- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran
Abstract:   (639 Views)
Background and Aim: Escherichia coli (E. coli) O157:H7 is the primary cause of food poisoning and urinary tract infection via Shiga toxin. The main transcription factor for Shiga toxin is Hfq gene. It is reported that probiotics can reduce the production of toxin substances in pathogenic bacteria. This study was aimed to investigate the influence of Bifidobacterium longum (B. longum) on the expression level of the Hfq gene as the main virulence factor in E. coli O157:H7.
Materials and Methods: B. longum was cultured in MRS (De Man, Rogosa, and Sharpe) medium. Different concentrations of B. longum was co-cultured in Mueller-Hinton Agar (MHA) along with E. coli in different time points. Total RNA was extracted followed by synthesizing cDNA. The Hfq gene expression  was evaluated by SYBR Green real-time PCR. The 16S ribosomal RNA was used as an internal control for data normalization.
Results: The results showed reduction in E. coli growth at different co-culture time points with B. longum . Molecular analysis demonstrated that B. longum has the ability to significantly reduce the expression of Hfq virulence gene (P=0.0023).
Conclusion: Probiotic bacteria inhibit the growth of pathogenic bacteria by producing bacteriocins and reducing the expression level of the virulence genes. They can also play role in inhibiting intoxications and infections caused by E. coli.
Full-Text [PDF 685 kb]   (174 Downloads) |   |   Full-Text (HTML)  (54 Views)  
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2024/08/11 | Accepted: 2024/11/20 | ePublished: 2024/11/30

References
1. Shringi S, Sheng H, Potter AA, Minnich SA, Hovde CJ, Besser TE. Repeated Oral Vaccination of Cattle with Shiga Toxin-Negative Escherichia coli O157:H7 Reduces Carriage of Wild-Type E. coli O157:H7 after Challenge. Appl Environ Microbiol. 2021;87(2):e02183-20. [DOI:10.1128/AEM.02183-20] [PMID] [PMCID]
2. Moxley RA, Bargar TW, Kachman SD, Baker DR, Francis DH. Intimate Attachment of Escherichia coli O157:H7 to Urinary Bladder Epithelium in the Gnotobiotic Piglet Model. Microorganisms. 2020;8(2):263 [DOI:10.3390/microorganisms8020263] [PMID] [PMCID]
3. Dai J, Li C, Cui H, Lin L. Unraveling the anti-bacterial mechanism of Litsea cubeba essential oil against E. coli O157:H7 and its application in vegetable juices. Int J Food Microbiol. 2021;338:108989. [DOI:10.1016/j.ijfoodmicro.2020.108989] [PMID]
4. Kendall MM, Gruber CC, Rasko DA, Hughes DT, Sperandio V. Hfq virulence regulation in enterohemorrhagic Escherichia coli O157:H7 strain 86-24. J Bacteriol. 2011;193(24):6843-51. [DOI:10.1128/JB.06141-11] [PMID] [PMCID]
5. Paritala V. Comparative gut Microbiome Evaluation of two Distinct Organisms: A Critical Review. J Agric Sci Eng. 2022;4(2):117-26.
6. Guimarães J, Fasura Balthazar C, Silva R, Esmerino E, Silva M, Sant'Ana A, et al. Impact of probiotics and prebiotics on food texture. Curr Opin Food Sci. 2020;33:38-44. [DOI:10.1016/j.cofs.2019.12.002]
7. Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, et al. How Probiotics Affect the Microbiota. Front Cell Infect Microbiol. 2019;9:454. [DOI:10.3389/fcimb.2019.00454] [PMID] [PMCID]
8. Khaneghah AM, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, et al. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol. 2020;95:205-18. [DOI:10.1016/j.tifs.2019.11.022]
9. Carey CM, Kostrzynska M, Ojha S, Thompson S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods. 2008;73(2):125-32. [DOI:10.1016/j.mimet.2008.01.014] [PMID]
10. Ahmadizadeh C, Mirzaei H. Evaluation of the Effect of Probiotics Isolated from Traditional Dairy Products on the Expression of Stx1 and Stx2 Genes of Verotoxigenic Escherichia coli (VTEC) in Laboratory Conditions. Iran Red Crescent Med J. 2018;20(3). [DOI:10.5812/ircmj.63544]
11. Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A, Kamiya S. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157:H7 infection in mice. FEMS Immunol Med Microbiol. 2004;41(3):219-26. [DOI:10.1016/j.femsim.2004.03.010] [PMID]
12. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun. 2004;72(4):2240-7. [DOI:10.1128/IAI.72.4.2240-2247.2004] [PMID] [PMCID]
13. Wan MLY, Forsythe SJ, El-Nezami H. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit Rev Food Sci Nutr. 2019;59(20):3320-33. [DOI:10.1080/10408398.2018.1490885] [PMID]
14. Cordonnier C, Thévenot J, Etienne-Mesmin L, Alric M, Livrelli V, Blanquet-Diot S. Probiotic and enterohemorrhagic Escherichia coli: An effective strategy against a deadly enemy?. Crit Rev Microbiol. 2017;43(1):116-32. [DOI:10.1080/1040841X.2016.1185602] [PMID]
15. Ku S, Yang S, Lee H, Choe D, Johnston T, Ji G, et al. Biosafety assessment of Bifidobacterium animalis subsp. lactis AD011 used for human consumption as a probiotic microorganism. Food Control. 2020;117:106985. [DOI:10.1016/j.foodcont.2019.106985]
16. Naylor SW, Gally DL, Low JC. Enterohaemorrhagic E. coli in veterinary medicine. Int J Med Microbiol. 2005;295(6-7):419-41. [DOI:10.1016/j.ijmm.2005.07.010] [PMID]
17. Rasko DA, Webster DR, Sahl JW, Bashir A, Boisen N, Scheutz F, et al. Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med. 2011;365(8):709-17. [DOI:10.1056/NEJMoa1106920] [PMID] [PMCID]
18. Griffin PM, Tauxe RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev. 1991;13(1):60-98. [DOI:10.1093/oxfordjournals.epirev.a036079] [PMID]
19. Rogel Prado F, Ramón Curay R, Martínez Moreira J, Mazón Vélez J, Bayas-Morejón F. Antimicrobial activity and in vitro identification of extended-spectrum beta-lactamases (esbls) produced by escherichia coli and klebsiella spp. isolated from bovine mastitis cases. J Med Pharm Chem Res. 2024;6(6):767-79.
20. Zhao T, Doyle MP, Harmon BG, Brown CA, Mueller PO, Parks AH. Reduction of carriage of enterohemorrhagic Escherichia coli O157:H7 in cattle by inoculation with probiotic bacteria. J Clin Microbiol. 1998;36(3):641-7. [DOI:10.1128/JCM.36.3.641-647.1998] [PMID] [PMCID]
21. Abootaleb M, Mohammadi Bandari N, Karimli M, Mobayen M, Feizkhah A, Masoumi S, et al. Assessing the safety of probiotic spray as an antibiotic alternative: A clinical trial at velayat burn injuries hospital. J Med Pharm Chem Res. 2024;6(4):466-73.
22. Quincha Angulo A. M., Galeas Barragán, M. A., Ramón Curay, R., Mazón-Vélez, J., Bayas Morejón, F. Antimicrobial effectiveness of wild-type bacillus spp vs bacillus subtilis atcc 6051 against Staphylococcus aureus and Klebsiella spp isolated from bovine mastitis. J Med Pharm Chem Res. 2025;7(5):960-73.
23. Alhassan UMA, Abdul-Kareem IQ. Molecular identification of virulence and antimicrobial resistance genes of isolated from the patients. J Med Pharm Chem Res. 2025;7(4):733-44.
24. Megha G, Sumana M, Nachimuthu RP. Mahale R. Bacteriophage therapy: Unleashing the potential of bacteriophages in modern medicine. J Med Pharm Chem Res. 2025;7(2):282-300.
25. Van Den Bogaard AE, London N, Driessen C, Stobberingh EE. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother. 2001;47(6):763-71. [DOI:10.1093/jac/47.6.763] [PMID]
26. Latif Jarallah A, Fadhil Kareem A, Hassan D, Sameer Al-Rawi M, Talib Al Sa'ady A, Al-Salami I. Synthesis, Characterization, Genotoxicity Assessment and Biological Activity of Derivatives Derived from Flucytosine Drug. Adv J Chem Section A. 2025;8(2):245-55.
27. Shinde R, Adole V. A Anti-Microbial Evaluation, Experimental and Theoretical Insights into Molecular Structure, Electronic Properties, and Chemical Reactivity of (E)-2-((1H-indol-3-yl)methylene)-2,3-dihydro-1H-inden-1-one. Appl Organomet Chem. 2021;1(2):48-58.
28. Valizadeh B, Rezaie M, Feghhi SAH, Hydarizadeh Y. R Evaluation of the Effect of UV-C on Induction of Antibiotic Resistance of Bacillus Cereus and Bacillus Subtilis Bacteria in Laboratory Conditions. J Agric Sci Eng. 2023;5(3):159-65.
29. Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B. Probiotic approach to prevent antibiotic resistance. Ann Med. 2016;48(4):246-55. [DOI:10.3109/07853890.2016.1161232] [PMID]
30. Swathykrishna CS, Amrithanjali G, Shaji G, Kumar RA. Antimicrobial Activity and Synthesis of Thiazole Derivatives: A Recent Update. J Chem Rev. 2023;5(3):221-40.
31. Patil NA, Udgire S, Shinde DR, Patil, PD. Green Synthesis of Gold Nanoparticles using Extract of Vitis vinifera, Buchananialanzan, Juglandaceae, Phoenix Dactylifera Plants, and Evaluation of Antimicrobial Activity. Chem Methodol. 2023;7(1):15-27.
32. Musa NM, Sallau MS, Oyewale AO, Ali T. Antimicrobial Activity of Lupeol and β-Amyrin (Triterpenoids) Isolated from the Rhizome of Dolichos pachyrhizus Harm. Adv J Chem Section A. 2024;7(1):1-14.
33. Badgujar ND, Dsouza MD, Nagargoje GR, Kadam PD, Momin KI, Bondge AS, et al. Recent Advances in Medicinal Chemistry with Benzothiazole-Based Compounds: An In-Depth Review. J Chem Rev. 2024;6(2):202-36.
34. Sharma P, Tomar S, Goswami P, Sangwan V, Singh R. Antibiotic resistance among commercially available probiotics. Food Res Int. 2014;57:176-95. [DOI:10.1016/j.foodres.2014.01.025]
35. Torabian P, Ghandehari F, Fatemi M. Biosynthesis of iron oxide nanoparticles by cytoplasmic extracts of bacteria lactobacillus casei. Asian J Green Chem. 2018;2(3):181-8.
36. Sangchooli T, Aboulhassanzadeh S, Aghazadeh H, Paeizi M, Shokri D, Malekzadeh M. Chemical Composition, Antioxidant Properties, and Antimicrobial Activity of Ferula assa-foetida L. Essential Oil against Pathogenic Bacteria. Chem Methodol. 2024;8(5):364-385.
37. Corthésy B, Gaskins HR, Mercenier A. Cross-talk between probiotic bacteria and the host immune system. J Nutr. 2007;137(3):781S-90S. [DOI:10.1093/jn/137.3.781S] [PMID]
38. Das T. Ranjan Kumar A, Satpathy I, Tripathy A. Maximizing profitability and freshness: Chemical treatment techniques for live fish transportation in Odisha. J Med Pharm Chem. 2024;6(2):195-212.
39. Oguche JE, Ameh AO, Bello TK, Maina NS. Samuel Prospect of Deep Eutectic Solvents in Lactic Acid Production Process: A Review. J Chem Rev. 2023;5(2):96-128.
40. Kumari P, Sengar M, Sengar N. A Mini Review on Lactic Acidosis Effect, Cause, Symptoms, Complications, Metabolism, and Pathodology with Its Diagnosis, Treatment, and Preventions. J Chem Rev. 2024;6(1):27-38.
41. Mellies JL, Lorenzen E. Enterohemorrhagic Escherichia coli virulence gene regulation. In Enterohemorrhagic Escherichia coli and Other Shiga Toxin‐Producing E. coli. 2015. pp. 175-95. Hoboken, New Jersey, United States: John Wiley & Sons, Inc. [DOI:10.1128/9781555818791.ch9] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc