year 18, Issue 5 (September - October 2024)                   Iran J Med Microbiol 2024, 18(5): 329-336 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadpour S, Sabeti Noghabi Z, Haghighizadeh A, Etemad L, Soheili V, Rajabi O. The Effect of Ozonated Olive Oil on Pseudomonas aeruginosa Biofilms. Iran J Med Microbiol 2024; 18 (5) :329-336
URL: http://ijmm.ir/article-1-2326-en.html
1- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
2- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
3- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
4- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran & Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran , rajabio@mums.ac.ir
Abstract:   (316 Views)

Background and Objective: Pseudomonas aeruginosa is known for its ability to produce biofilms on medical device surfaces, contributing to resistance against current antibiotic treatments. Ozonated olive oil has demonstrated antibacterial effects, prompting this study to evaluate its efficacy against biofilms produced by two strains of Pseudomonas aeruginosa.
Methods: This study investigated the potential of ozonated olive oil to prevent biofilm formation, degrade established biofilms, and penetrate biofilms after ozone treatment.
Results & Conclusion: Both 5% and 10% ozonated olive oil inhibited biofilm formation in the P. aeruginosa POA1 strain, while the 1707 strain showed resistance to all concentrations tested. Treatment with 15% ozonated olive oil resulted in the complete elimination of the PAO1 strain biofilm. Additionally, 5% ozonated olive oil effectively removed the 1707 biofilm structure. All concentrations (10%, 15%, and 30%) penetrated the PAO1 biofilm and eliminated sessile bacteria, whereas only 5% and 15% ozonated olive oil could penetrate the biofilm of the 1707 strain. These findings suggest that ozonated olive oil exhibits significant anti-biofilm effects against Pseudomonas aeruginosa.

Full-Text [PDF 960 kb]   (110 Downloads) |   |   Full-Text (HTML)  (34 Views)  
Type of Study: Brief Original Article | Subject: Environmental Microbiology
Received: 2024/06/23 | Accepted: 2024/10/27 | ePublished: 2024/11/30

References
1. Qayyum S, Sharma D, Bisht D, Khan AU. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochem Biophys Res Commun. 2016;474:652-9. [DOI:10.1016/j.bbrc.2016.04.145] [PMID]
2. de Vor L, Rooijakkers SHM, van Strijp JAG. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett. 2020;594:2556-69. [DOI:10.1002/1873-3468.13767] [PMID]
3. Panlilio H, Rice C V. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng. 2021;118(6):2129-41. [DOI:10.1002/bit.27760] [PMID] [PMCID]
4. Crouzet M, Le Senechal C, Brözel VS, Costaglioli P, Barthe C, Bonneu M, et al. Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC Microbiol. 2014;14:253. [DOI:10.1186/s12866-014-0253-z] [PMID] [PMCID]
5. Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 2020;9(2):59. [DOI:10.3390/antibiotics9020059] [PMID] [PMCID]
6. Khatoon Z, McTiernan CD, Suuronen EJ, Mah T-F, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. [DOI:10.1016/j.heliyon.2018.e01067] [PMID] [PMCID]
7. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. Bacterial biofilm and associated infections. J chinese Med Assoc. 2018;81(1):7-11. [DOI:10.1016/j.jcma.2017.07.012] [PMID]
8. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6(2):109-19. [DOI:10.1016/j.gendis.2019.04.001] [PMID] [PMCID]
9. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
10. Litwin A, Rojek S, Gozdzik W, Duszynska W. Pseudomonas aeruginosa device associated-healthcare associated infections and its multidrug resistance at intensive care unit of University Hospital: polish, 8.5-year, prospective, single-centre study. BMC Infect Dis. 2021;21:1-8. [DOI:10.1186/s12879-021-05883-5] [PMID] [PMCID]
11. Labovská S. Pseudomonas aeruginosa as a cause of nosocomial infections. In Pseudomonas aeruginosa-Biofilm Form Infect Treat. 2021. London, United Kingdom: IntechOpen. [DOI:10.5772/intechopen.95908]
12. Jacobsen SM, Shirtliff ME. Proteus mirabilis biofilms and catheter-associated urinary tract infections. Virulence. 2011;2(5):460-5. [DOI:10.4161/viru.2.5.17783] [PMID]
13. Maki DG, Crnich CJ, Safdar N. Nosocomial infection in the intensive care unit. Crit Care Med. 2009;1003-69. [DOI:10.1016/B978-032304841-5.50053-4] [PMID]
14. Kang C-I, Kim S-H, Kim H-B, Park S-W, Choe Y-J, Oh M, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37(6):745-51. [DOI:10.1086/377200] [PMID]
15. Mishra A, Aggarwal A, Khan F. Medical device-associated infections caused by biofilm-forming microbial pathogens and controlling strategies. Antibiotics. 2024;13(7):623. [DOI:10.3390/antibiotics13070623] [PMID] [PMCID]
16. Percival SL, Suleman L, Vuotto C, Donelli G. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol. 2015;64(4):323-34. [DOI:10.1099/jmm.0.000032] [PMID]
17. Tiwari S, Avinash A, Katiyar S, Iyer AA, Jain S. Dental applications of ozone therapy: A review of literature. Saudi J Dent Res. 2017;8(1-2):105-11. [DOI:10.1016/j.sjdr.2016.06.005]
18. Remondino M, Valdenassi L. Different uses of ozone: environmental and corporate sustainability. Literature review and case study. Sustainability. 2018;10(12):4783. [DOI:10.3390/su10124783]
19. Cetraro N, Cody RB, Yew JY. Carbon-carbon double bond position elucidation in fatty acids using ozone-coupled direct analysis in real time mass spectrometry. Analyst. 2019;144(19):5848-55. [DOI:10.1039/C9AN01059A] [PMID] [PMCID]
20. Criegee R. Mechanism of ozonolysis. Angew Chemie Int Ed Engl. 1975;14:745-52. [DOI:10.1002/anie.197507451]
21. Rajabi O, Sazgarnia A, Abbasi F, Layegh P. The activity of ozonated olive oil against Leishmania major promastigotes. Iran J basic Med Sci. 2015;18(9):915-9. [DOI:10.22038/ijbms.2015.5215] [PMID] [PMCID]
22. Haghighizadeh A, Mortezanejad SAF, Dadpour S, Rajabi O. Evaluation of Anti-lice Topical Lotion of Ozonated Olive Oil and Comparison of its Effect with Permethrin Shampoo. Rev Recent Clin Trials. 2022;17(1):58-67. [DOI:10.2174/1574887116666211202122132] [PMID]
23. Grace A, Sahu R, Owen DR, Dennis VA. Pseudomonas aeruginosa reference strains PAO1 and PA14: A genomic, phenotypic, and therapeutic review. Front Microbiol. 2022;13:1023523. [DOI:10.3389/fmicb.2022.1023523] [PubMed] [PMCID]
24. Karimi B, Habibi M, Esvand M. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. J Environ Health Sci Eng. 2015;13:1. [DOI:10.1186/s40201-015-0175-1] [PubMed] [PMCID]
25. Tajani AS, Jangi E, Davodi M, Golmakaniyoon S, Ghodsi R, Soheili V, et al. Anti-quorum sensing potential of ketoprofen and its derivatives against Pseudomonas aeruginosa: insights to in silico and in vitro studies. Arch Microbiol. 2021;203:5123-32. [DOI:10.1007/s00203-021-02499-w] [PMID]
26. Soltani S, Fazly Bazzaz BS, Hadizadeh F, Roodbari F, Soheili V. New Insight into Vitamins E and K1 as Anti-Quorum-Sensing Agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2021;65(6):e01342-20. [DOI:10.1128/AAC.01342-20] [PMID] [PMCID]
27. Sabaeifard P, Abdi-Ali A, Soudi MR, Dinarvand R. Optimization of tetrazolium salt assay for Pseudomonas aeruginosa biofilm using microtiter plate method. J Microbiol Methods. 2014;105:134-40. [DOI:10.1016/j.mimet.2014.07.024] [PMID]
28. Radzimierska-Kaźmierczak M, Śmigielski K, Sikora M, Nowak A, Plucińska A, Kunicka-Styczyńska A, et al. Olive Oil with Ozone-Modified Properties and Its Application. Molecules. 2021;26(11):3074. [DOI:10.3390/molecules26113074] [PMID] [PMCID]
29. Di Pietro M, Filardo S, Mattioli R, Bozzuto G, Raponi G, Mosca L, et al. Anti-Biofilm Activity of Oleacein and Oleocanthal from Extra-Virgin Olive Oil toward Pseudomonas aeruginosa. Int J Mol Sci. 2024;25(9):5051. [DOI:10.3390/ijms25095051] [PMID] [PMCID]
30. Silva V, Peirone C, Amaral JS, Capita R, Alonso-Calleja C, Marques-Magallanes JA, et al. High efficacy of ozonated oils on the removal of biofilms produced by methicillin-resistant Staphylococcus aureus (MRSA) from infected diabetic foot ulcers. Molecules. 2020;25(16):3601. [DOI:10.3390/molecules25163601] [PMID] [PMCID]
31. Oz Y, Nabawy A, Fedeli S, Gupta A, Huang R, Sanyal A, et al. Biodegradable poly (lactic acid) stabilized nanoemulsions for the treatment of multidrug-resistant bacterial biofilms. ACS Appl Mater Interfaces. 2021;13(34):40325-31 [DOI:10.1021/acsami.1c11265] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc