year 18, Issue 5 (September - October 2024)                   Iran J Med Microbiol 2024, 18(5): 287-300 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eshrati B, Rimaz S, Yaghoobi M, Effati S, Jabbari Nooghabi M, Tajzadeh P. Simulation of the Possible Routes of Acinetobacter spp. Transmission in the Intensive Care Units: An Agent-Based Computational Study. Iran J Med Microbiol 2024; 18 (5) :287-300
URL: http://ijmm.ir/article-1-2320-en.html
1- Preventive Medicine and Public Health Research Center, Iran University of Medical Sciences, Tehran, Iran
2- Radiation Biology Research Center, Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
3- Department of Epidemiology, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran & Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
4- Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
5- Department of Statistics, Ferdowsi University of Mashhad, Mashhad, Iran
6- Department of Medical Laboratory Sciences, Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran , Tajzadehp@mums.ac.ir
Abstract:   (644 Views)

Background & Objective: Healthcare-associated infections (HAIs) are serious adverse events that mostly occur in intensive care units (ICUs). Across different infection types, ventilator-associated events (VAE) are of particular concern. Thus, using an agent-based model, we attempted to identify the potential role of mechanical ventilation in transmission of Acinetobacter spp. in ICU settings.
Methods: For the purpose of this computational study, we designed an agent-based model of patients in a regional network of four hospitals in Mashhad, Iran from April 2017 to September 2019 and measured all necessary parameters for the model input. Net Logo was utilized for implementing agent-based model, and R for the data analysis and design of experiments.
Results: A total of 4677 HAI events were recorded in ICUs. Acinetobacter spp. (21.8%) were the most common pathogens isolated from ICU patients, followed by Klebsiella spp. (13.2%) and Staphylococcus spp. (12.2%). HAIs in the first place in the form of VAE (37.7%) were caused by Acinetobacter spp. in more than half (58.5%).
Conclusion: The simulation methods such as agent-based modeling will be useful for intervention and management planning, futurism and reduce mortality and costs. Using the appropriate tools to control hospital infections according the guidelines and bundle of the World Health Organization will reduce the probability of transmitting Nosocomial infections and Acinetobacter spp. in ICU. In this study; patient-related parameters were implied. Intervention studies recommended.

Full-Text [PDF 670 kb]   (201 Downloads) |   |   Full-Text (HTML)  (81 Views)  
Type of Study: Original Research Article | Subject: Nosocomial infections
Received: 2024/05/25 | Accepted: 2024/09/15 | ePublished: 2024/11/30

References
1. Alecrim RX, Taminato M, Belasco A, Longo MCB, Kusahara DM, Fram D. Strategies for preventing ventilator-associated pneumonia: an integrative review. Rev Bras Enferm. 2019;72(2):521-30. [DOI:10.1590/0034-7167-2018-0473] [PMID]
2. American Thoracic Society, Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416. [DOI:10.1164/rccm.200405-644ST] [PMID]
3. Izadi N, Eshrati B, Mehrabi Y, Etemad K, Hashemi-Nazari SS. The national rate of intensive care units-acquired infections, one-year retrospective study in Iran. BMC Public Health. 2021;21(1):609. [DOI:10.1186/s12889-021-10639-6] [PMID] [PMCID]
4. Clark RP, de Calcina-Goff ML. Some aspects of the airborne transmission of infection. J R Soc Interface. 2009;6(suppl_6):S767-S82. [DOI:10.1098/rsif.2009.0236.focus] [PMID] [PMCID]
5. Etemad M, Khani Y, Hashemi-Nazari SS, Izadi N, Eshrati B, Mehrabi Y. Survival rate in patients with ICU-acquired infections and its related factors in Iran's hospitals. BMC Public Health. 2021;21(1):787. [DOI:10.1186/s12889-021-10857-y] [PMID] [PMCID]
6. Espinal P, Martí S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect. 2012;80(1):56-60. [DOI:10.1016/j.jhin.2011.08.013] [PMID]
7. Dolma KG. Acinetobacter baumannii: An overview of emerging multidrug-resistant pathogen. Med J Malaysia. 2022;77(3):357.
8. Touhidinia M, Sefid F, Bidakhavidi M. Design of a Multi-epitope Vaccine Against Acinetobacter baumannii Using Immunoinformatics Approach. Int J Pept Res Ther. 2021;27(4):2417-37. [DOI:10.1007/s10989-021-10262-4] [PMID] [PMCID]
9. Abbo A, Navon-Venezia S, Hammer-Muntz O, Krichali T, Siegman-Igra Y, Carmeli Y. Multidrug-resistant Acinetobacter baumannii. Emerg Infect Dis. 2005;11(1):22-9. [DOI:10.3201/eid1101.040001] [PMID] [PMCID]
10. Wong D, Nielsen Travis B, Bonomo Robert A, Pantapalangkoor P, Luna B, Spellberg B. Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev. 2017;30(1):409-47. [DOI:10.1128/CMR.00058-16] [PMID] [PMCID]
11. Doan TN, Kong DC, Marshall C, Kirkpatrick CM, McBryde ES. Modeling the impact of interventions against Acinetobacter baumannii transmission in intensive care units. Virulence. 2016;7(2):141-52. [DOI:10.1080/21505594.2015.1076615] [PMID] [PMCID]
12. Triola MM, Holzman RS. Computer simulation of pathogen transmission in the medical intensive care unit: a comparison of two probabilistic methods. In MEDINFO 2004. 2004 (pp. 1277-1281). IOS Press. [DOI:10.3233/978-1-60750-949-3-1277]
13. Barnes SL, Rock C, Harris AD, Cosgrove SE, Morgan DJ, Thom KA. The Impact of Reducing Antibiotics on the Transmission of Multidrug-Resistant Organisms. Infect Control Hosp Epidemiol. 2017;38(6):663-9. [DOI:10.1017/ice.2017.34] [PMID] [PMCID]
14. Miksch F, Urach C, Einzinger P, Zauner G. A flexible agent-based framework for infectious disease modeling. In Information and Communication Technology: Second IFIP TC5/8 International Conference, ICT-EurAsia 2014, Bali, Indonesia, April 14-17, 2014. Proceedings 2 2014 (pp. 36-45). Berlin, Germany: Springer Berlin Heidelberg. [DOI:10.1007/978-3-642-55032-4_4]
15. Ghaderzadeh M, Asadi F, Ramezan Ghorbani N, Almasi S, Taami T. Toward artificial intelligence (AI) applications in the determination of COVID-19 infection severity: considering AI as a disease control strategy in future pandemics. Iran J Blood Cancer. 2023;15(3):93-111. [DOI:10.61186/ijbc.15.3.93]
16. Fasihfar Z, Rokhsati H, Sadeghsalehi H, Ghaderzadeh M, Gheisari M. AI-driven malaria diagnosis: developing a robust model for accurate detection and classification of malaria parasites. Iran J Blood Cancer. 2023;15(3):112-24. [DOI:10.61186/ijbc.15.3.112]
17. Hunter E, Mac Namee B, Kelleher J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLoS One. 2018;13(12):e0208775. [DOI:10.1371/journal.pone.0208775] [PMID] [PMCID]
18. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36(5):309-32. [DOI:10.1016/j.ajic.2008.03.002] [PMID]
19. Rimaz S, Tajzadeh P, Bahrami M, Nooghabi M, Eshrati B, Effati S, et al. Epidemiological features, antimicrobial resistance profile and clinical outcomes of healthcare-associated infections in Islamic Republic of Iran. East Mediterr Health J. 2023;29(9):688-98. [DOI:10.26719/emhj.23.043] [PMID]
20. Tisue S, Wilensky U. NetLogo: Design and implementation of a multi-agent modeling environment. In Proceedings of agent. Vol. 2004, pp. 7-9. 2024. Access from: [https://ccl.northwestern.edu]
21. Hotchkiss JR, Strike DG, Simonson DA, Broccard AF, Crooke PS. An agent-based and spatially explicit model of pathogen dissemination in the intensive care unit. Crit Care Med. 2005;33(1):168-76. [DOI:10.1097/01.CCM.0000150658.05831.D2] [PMID]
22. Talebi-Taher M, Latifnia M, Javad-Moosavai SA, Adabi M, Lari AR, Abdizadeh MF, et al. Risk factors and antimicrobial susceptibility in ventilator associated pneumonia: a brief report. Tehran Univ Med J. 2012;70(9):577.
23. Fournier PE, Richet H, Weinstein RA. The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis. 2006;42(5):692-9. [DOI:10.1086/500202] [PMID]
24. Struelens MJ, Carlier E, Maes N, Serruys E, Quint WG, Van Belkum A. Nosocomial colonization and infection with multiresistant Acinetobacter baumannii: outbreak delineation using DNA macrorestriction analysis and PCR-fingerprinting. J Hosp Infect. 1993;25(1):15-32. [DOI:10.1016/0195-6701(93)90005-K] [PMID]
25. John AO, Paul H, Vijayakumar S, Anandan S, Sudarsan T, Abraham OC, et al. Mortality from acinetobacter infections as compared to other infections among critically ill patients in South India: A prospective cohort study. Indian J Med Microbiol. 2020;38(1):24-32. [DOI:10.4103/ijmm.IJMM_19_492] [PMID]
26. Leão AC, Menezes PR, Oliveira MS, Levin AS. Acinetobacter spp. are associated with a higher mortality in intensive care patients with bacteremia: a survival analysis. BMC Infect Dis. 2016;16(1):1-8. [DOI:10.1186/s12879-016-1695-8] [PMID] [PMCID]
27. Yazdani Cherati J, Shojaee J, Chaharkameh A, Rezai MS, Khosravi F, Rezai F, et al. Incidence of nosocomial infection in selected cities according NISS software in Mazandaran province. J Mazandaran Univ Med Sci. 2015;24(122):64-72.
28. Almagor J, Temkin E, Benenson I, Fallach N, Carmeli Y, DRIVE-AB consortium. The impact of antibiotic use on transmission of resistant bacteria in hospitals: Insights from an agent-based model. PloS One. 2018;13(5):e0197111. [DOI:10.1371/journal.pone.0197111] [PMID] [PMCID]
29. Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46(5):888-906. [DOI:10.1007/s00134-020-05980-0] [PMID] [PMCID]
30. Stoclin A, Rotolo F, Hicheri Y, Mons M, Chachaty E, Gachot B, et al. Ventilator-associated pneumonia and bloodstream infections in intensive care unit cancer patients: a retrospective 12-year study on 3388 prospectively monitored patients. Support Care Cancer. 2020;28:193-200. [DOI:10.1007/s00520-019-04800-6] [PMID] [PMCID]
31. Cook A, Norwood S, Berne J. Ventilator-associated pneumonia is more common and of less consequence in trauma patients compared with other critically ill patients. J Trauma Acute Care Surg. 2010;69(5):1083-91. [DOI:10.1097/TA.0b013e3181f9fb51] [PMID]
32. Iordanou S, Middleton N, Papathanassoglou E, Raftopoulos V. Surveillance of device associated infections and mortality in a major intensive care unit in the Republic of Cyprus. BMC Infect Dis. 2017;17:607. [DOI:10.1186/s12879-017-2704-2] [PMID] [PMCID]
33. Di Pasquale M, Ferrer M, Esperatti M, Crisafulli E, Giunta V, Bassi GL, et al. Assessment of severity of ICU-acquired pneumonia and association with etiology. Crit Care Med. 2014;42(2):303-12. [DOI:10.1097/CCM.0b013e3182a272a2] [PMID]
34. Esperatti M, Ferrer M, Theessen A, Liapikou A, Valencia M, Saucedo LM, et al. Nosocomial pneumonia in the intensive care unit acquired by mechanically ventilated versus nonventilated patients. Am J Respir Crit Care Med. 2010;182(12):1533-9. [DOI:10.1164/rccm.201001-0094OC] [PMID]
35. Rello J, Ollendorf DA, Oster G, Vera-Llonch M, Bellm L, Redman R, et al. Epidemiology and outcomes of ventilator-associated pneumonia in a large US database. Chest. 2002;122(6):2115-21. [DOI:10.1378/chest.122.6.2115] [PMID]
36. Bailey KL, Kalil AC. Ventilator-associated pneumonia (VAP) with multidrug-resistant (MDR) pathogens: optimal treatment?. Curr Infect Dis Rep. 2015;17:39. [DOI:10.1007/s11908-015-0494-5] [PMID]
37. Luyt CE, Hékimian G, Koulenti D, Chastre J. Microbial cause of ICU-acquired pneumonia: hospital-acquired pneumonia versus ventilator-associated pneumonia. Curr Opin Crit Care. 2018;24(5):332-8. [DOI:10.1097/MCC.0000000000000526] [PMID]
38. Huang Y, Jiao Y, Zhang J, Xu J, Cheng Q, Li Y, et al. Microbial etiology and prognostic factors of ventilator-associated pneumonia: a multicenter retrospective study in Shanghai. Clin Infect Dis. 2018;67(suppl_2):S146-52. [DOI:10.1093/cid/ciy686] [PMID]
39. Salehifar E, Abedi S, Mirzaei E, Kalhor S, Eslami G, Ala S, et al. Profile of Microorganisms Involved in Nosocomial Pneumonia and Their Antimicrobial Resistance Pattern in Intensive Care Units of Imam Khomeini Hospital, Sari, 2011-2012. J Mazandaran Univ Med Sci. 2013;23(1):151-62.
40. Amri Meleh P, Bayani M, Nikbakhsh N, Pourhassan A, Marzban M, SHirkhani Z, et al. Incidence, causes and outcomes of ventilator-associated pneumonia in the medical intensive care unit. Nurs Midwifery J. 2013;11(7):0.
41. Mythri H, Kashinath KR. Nosocomial infections in patients admitted in intensive care unit of a tertiary health center, India. Ann Med Health Sci Res. 2014;4(5):738-41. [DOI:10.4103/2141-9248.141540] [PMID] [PMCID]
42. Ghanshani R, Gupta R, Gupta BS, Kalra S, Khedar RS, Sood S. Epidemiological study of prevalence, determinants, and outcomes of infections in medical ICU at a tertiary care hospital in India. Lung India. 2015;32(5):441-8. [DOI:10.4103/0970-2113.164155] [PMID] [PMCID]
43. Wang L, Zhou KH, Chen W, Yu Y, Feng SF. Epidemiology and risk factors for nosocomial infection in the respiratory intensive care unit of a teaching hospital in China: A prospective surveillance during 2013 and 2015. BMC Infect Dis. 2019;19:145. [DOI:10.1186/s12879-019-3772-2] [PMID] [PMCID]
44. Wenzel R P, Brewer T F, Butzler J P. A guide to infection control in the hospital. 2002, Shelton, Connecticut, United States: PMPH-USA.
45. Baccolini V, Migliara G, Isonne C, Dorelli B, Barone LC, Giannini D, et al. The impact of the COVID-19 pandemic on healthcare-associated infections in intensive care unit patients: a retrospective cohort study. Antimicrob Resist Infect Control. 2021;10:87. [DOI:10.1186/s13756-021-00959-y] [PMID] [PMCID]
46. Yu J, Nie L, Zhou X, Wu D, Chen J, Yang Z, et al. Bacteriological Characteristics of COVID-19 Patients Nosocomially Co-infected at a Designated Hospital: A Retrospective Study. Research Square. 2020. [DOI:10.21203/rs.3.rs-65356/v1.]
47. Li J, Wang J, Yang Y, Cai P, Cao J, Cai X, et al. Etiology and antimicrobial resistance of secondary bacterial infections in patients hospitalized with COVID-19 in Wuhan, China: a retrospective analysis. Antimicrob Resist Infect Control. 2020;9:153. [DOI:10.1186/s13756-020-00819-1] [PMID] [PMCID]
48. Akdogan O, Ersoy Y, Kuzucu C, Gedik E, Togal T, Yetkin F. Assessment of the effectiveness of a ventilator associated pneumonia prevention bundle that contains endotracheal tube with subglottic drainage and cuff pressure monitorization. Braz J Infect Dis. 2017;21(3):276-81. [DOI:10.1016/j.bjid.2017.01.002] [PMID] [PMCID]
49. Iregui M, Kollef MH. Prevention of ventilator-associated pneumonia: selecting interventions that make a difference. Chest. 2002;121(3):679-81. [DOI:10.1378/chest.121.3.679] [PMID]
50. Alcan AO, Korkmaz FD, Uyar M. Prevention of ventilator-associated pneumonia: Use of the care bundle approach. Am J Infect Control. 2016;44(10):e173-6. [DOI:10.1016/j.ajic.2016.04.237] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc