year 18, Issue 2 (March - April 2024)                   Iran J Med Microbiol 2024, 18(2): 89-97 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Akhlaghi F, Nikokar I, Mojtahedi A, Mobin M, Atrkar Roshan Z, Karampour M. Molecular detection of mutations in gyrA, gyrB, parC, and parE genes in the quinolone resistance determining region among Pseudomonas aeruginosa isolated from burn wound infection. Iran J Med Microbiol 2024; 18 (2) :89-97
URL: http://ijmm.ir/article-1-2291-en.html
1- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht
2- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran & Medical Biotechnology Research Center, Laboratory of Microbiology and Immunology of Infectious Diseases, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran , nikokariraj@yahoo.com
3- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
4- Department of Surgery, Guilan University of Medical Science, Rasht, Iran
5- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
Abstract:   (137 Views)

Background and Aim: The prevalence of fluoroquinolone resistance among Pseudomonas aeruginosa isolates, particularly in burn wound infections, has been increasing. The primary cause of ciprofloxacin resistance is attributed to genetic alterations in the quinolone resistance determinant region (QRDR). In this study, we evaluated the antimicrobial resistance profile and QRDR gene mutations in both ciprofloxacin-resistant and non-resistant strains of P. aeruginosa derived from burn wound patients.
Materials and Methods: A total of 300 samples were collected from patients with burn wound infections in Guilan, Iran. The isolates were identified as P. aeruginosa, and drug susceptibility tests were conducted using the agar disk diffusion method. DNA extraction and polymerase chain reaction (PCR) analysis were performed for the amplification and sequencing of gyrA, gyrB, parC, and parE genes in the QRDR region.
Results: Resistance to Tobramycin, Gentamicin, Piperacillin, Ciprofloxacin, Ceftazidime, and Amikacin was observed in 59.32%, 55.08%, 51.69%, 50.84%, 30.50%, and 26.27% of the isolates, respectively. Forty-two (35.59%) isolates were multi-drug-resistant (MDR). The sequencing results in the QRDR region showed that the majority of mutations were in the gyrA gene, with 85.71% of these mutations being the substitution of threonine with isoleucine (Thr-83 Ile) in ciprofloxacin-resistant strains. An unusual amino acid substitution at codon 470 of the parE gene encoding DNA topoisomerase IV (Aspartic acid replaced by Asparagine) was observed in a ciprofloxacin-resistant strain. No mutations were found in the gyrB (gyrase gene) and parC gene encoding DNA topoisomerase IV.
Conclusion: The results of this study indicate that mutations in the gyrA (gyrase gene) are a significant mechanism of resistance to fluoroquinolones. Identifying these mutations can aid in the detection of fluoroquinolone-resistant isolates and simplify treatment challenges by selecting the appropriate antibiotic.

Full-Text [PDF 584 kb]   (16 Downloads)    
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2024/01/8 | Accepted: 2024/05/10 | ePublished: 2024/05/25

References
1. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):1-27. [DOI:10.1038/s41392-022-01056-1]
2. Shariati A, Asadian E, Fallah F, Azimi T, Hashemi A, Sharahi JY, et al. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect Drug Resist. 2019;12:2223. [DOI:10.2147/IDR.S213200] [PMID] [PMCID]
3. Hassannia M, Naderifar M, Salamy S, Akbarizadeh MR, Mohebi S, Moghadam MT. Engineered phage enzymes against drug-resistant pathogens: a review on advances and applications. Bioprocess Biosyst Eng. 2024;47(3):301-12. [DOI:10.1007/s00449-023-02938-6] [PMID]
4. Boroujeni MB, Mohebi S, Malekian A, Shahraeini SS, Gharagheizi Z, Shahkolahi S, et al. The therapeutic effect of engineered phage, derived protein and enzymes against superbug bacteria. Biotechnology and Bioengineering. 2024;121(1):82-99. [DOI:10.1002/bit.28581] [PMID]
5. Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020;19(1):45. [DOI:10.1186/s12941-020-00389-5] [PMID] [PMCID]
6. Shahbandeh M, Taati Moghadam M, Mirnejad R, Mirkalantari S, Mirzaei M. The efficacy of AgNO3 nanoparticles alone and conjugated with imipenem for combating extensively drug-resistant Pseudomonas aeruginosa. Int J Nanomed. 2020;15:6905-16. [DOI:10.2147/IJN.S260520] [PMID] [PMCID]
7. Hosseini M, Ahmed Hamad M, Mohseni G, Salamy S, Dehghan Tarzjani S, Taati Moghadam M. Prediction of tsunami of resistance to some antibiotics is not far‐fetched which used during COVID‐19 pandemic. J Clin Lab Anal. 2023;37(15-16):e24959. [DOI:10.1002/jcla.24959] [PMID] [PMCID]
8. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
9. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
10. Nouri R, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M, Asgharzadeh M. The role of gyrA and parC mutations in fluoroquinolones-resistant Pseudomonas aeruginosa isolates from Iran. Braz J Microbiol. 2016;47:925-30. [DOI:10.1016/j.bjm.2016.07.016] [PMID] [PMCID]
11. Norouzi A, Hossieni NH, Mohebi S, Kandehkar GM, Taati MM. Frequency of plasmid-mediated qnrA, qnrB, and qnrS genes and determination of antibiotic susceptibility among quinolones and fluoroquinolones resistance Escherichia coli isolated from Kerman hospitals. Razi J Med Sci. 2016;23:98-105.
12. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013;5(1):36-41.
13. Khosravi AD, Motahar M, Abbasi Montazeri E. The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PloS One. 2017;12(8):e0183061. [DOI:10.1371/journal.pone.0183061] [PMID] [PMCID]
14. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59(12):10-128. [DOI:10.1128/JCM.00213-21] [PMID] [PMCID]
15. Mohebi S, Hossieni Nave H, Norouzi A, Kandehkar Gharaman M, Taati Moghadam M. Detection of extended spectrum beta lactamases on class I integron in escherichia coli isolated from clinical samples. J Maz Univ Med Sci. 2016;26(138):66-76.
16. Moradi M, Norouzi A. Prevalence of bla-CTX-M, bla-SHV, and bla-TEM Genes and Comparison of Antibiotic Resistance Pattern in Extended-spectrum β-lactamase producing and non-producing groups of Klebsiella pneumoniae Isolated from Clinical Samples in Kerman Hospitals. J Adv Biomed Sci. 2016;6(1):120-8.
17. Moghadam M, Shariati A, Mirkalantari S, Karmostaji A. The complex genetic region conferring transferable antibiotic resistance in multidrug-resistant and extremely drug-resistant Klebsiella pneumoniae clinical isolates. New Microbes New Infect. 2020;36:100693. [DOI:10.1016/j.nmni.2020.100693] [PMID] [PMCID]
18. Taati Moghadam M, Hossieni Nave H, Mohebi S, Norouzi A. The evaluation of connection between integrons class I and II and ESBL-producing and Non-ESBL klebsiella pneumoniae isolated from clinical samples, Kerman. Iran J Med Microbiol. 2016;10(4):1-9.
19. Wang Y-T, Lee M-F, Peng C-F. Mutations in the quinolone resistance-determining regions associated with ciprofloxacin resistance in Pseudomonas aeruginosa isolates from Southern Taiwan. Biomark Genom Med. 2014;6(2):79-83. [DOI:10.1016/j.bgm.2014.03.003]
20. Dou Y, Huan J, Guo F, Zhou Z, Shi Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J Int Med Res. 2017;45(3):1124-37. [DOI:10.1177/0300060517703573] [PMID] [PMCID]
21. Tarafdar F, Jafari B, Azimi T. Evaluating the antimicrobial resistance patterns and molecular frequency of blaoxa-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. New Microbes New Infect. 2020;37:100686. [DOI:10.1016/j.nmni.2020.100686] [PMID] [PMCID]
22. Kishk RM, Abdalla MO, Hashish AA, Nemr NA, El Nahhas N, Alkahtani S, et al. Efflux MexAB-mediated resistance in P. aeruginosa isolated from patients with healthcare associated infections. Pathogens. 2020;9(6):471. [DOI:10.3390/pathogens9060471] [PMID] [PMCID]
23. Tchakal-Mesbahi A, Metref M, Singh VK, Almpani M, Rahme LG. Characterization of antibiotic resistance profiles in Pseudomonas aeruginosa isolates from burn patients. Burns. 2021;47(8):1833-43. [DOI:10.1016/j.burns.2021.03.005] [PMID] [PMCID]
24. Vaez H, Salehi-Abargouei A, Khademi F. Systematic review and meta-analysis of imipenem-resistant Pseudomonas aeruginosa prevalence in Iran. Germs. 2017;7(2):86-97. [DOI:10.18683/germs.2017.1113] [PMID] [PMCID]
25. Ahmadian L, Haghshenas MR, Mirzaei B, Norouzi Bazgir Z, Goli HR. Distribution and molecular characterization of resistance gene cassettes containing class 1 integrons in multi-drug resistant (MDR) clinical isolates of Pseudomonas aeruginosa. Infect Drug Resist. 2020:2773-81. [DOI:10.2147/IDR.S263759] [PMID] [PMCID]
26. Pachori P, Gothalwal R, Gandhi P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019;6(2):109-19. [DOI:10.1016/j.gendis.2019.04.001] [PMID] [PMCID]
27. Mensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, et al. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: Guidelines by the Spanish Society of Chemotherapy. Revista Española de Quimioterapia. 2018;31(1):78.
28. Rashid Mahmood A, Mansour Hussein N. Study of Antibiotic Resistant Genes in Pseudomonas aeroginosa Isolated from Burns and Wounds. Arch Razi Inst. 2022;77(1):403-11.
29. Jacoby GA. Mechanisms of resistance to quinolones. Clin Infect Dis. 2005;41(Supplement_2):S120-S6. [DOI:10.1086/428052] [PMID]
30. Akasaka T, Tanaka M, Yamaguchi A, Sato K. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999: role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob Agents Chemother. 2001;45(8):2263-8. [DOI:10.1128/AAC.45.8.2263-2268.2001] [PMID] [PMCID]
31. Avsar C, Yegin Z. The Effect of Topoisomerase Mutations on the Resistance to the Second Generation Quinolones in Pseudomonas aeruginosa Clinical Isolates. Res Rev Res J Biol. 2017;5(1):2322-0066.
32. Ogunleye A. Identification of GyrA mutations conferring fluoroquinolone resistance in Pseudomonas aeruginosa isolated from poultry in Ibadan, Oyo State, Nigeria. Afr J Microbiol Res. 2012;6:1573-8. [DOI:10.5897/AJMR11.1466]
33. Salma R, Dabboussi F, Kassaa I, Hamze M, Khudary R. gyrA and parC mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa from Nini Hospital in north Lebanon. J Infect Chemother. 2013;19(1):77-81. [DOI:10.1007/s10156-012-0455-y] [PMID]
34. Farahi RM, Ali AA, Gharavi S. Characterization of gyrA and parC mutations in ciprofloxacin-resistant Pseudomonas aeruginosa isolates from Tehran hospitals in Iran. Iran J Microbiol. 2018;10(4):242.
35. Fazeli H, Havaei SA, Saeidi S, Badamchi A, Zamani FZ, Solgi H. Molecular Detection of gyrA, parC and oprD Mutation in Pseudomonas aeruginosa Isolates from a University Hospital of Isfahan, Iran during 2016. J Med Bacteriol. 2017;6(1-2):21-7.
36. Wydmuch Z, Skowronek-Ciolek O, Cholewa K, Mazurek U, Pacha J, Kepa M, et al. GyrA mutations in ciprofloxacin-resistant clinical isolates of Pseudomonas aeruginosa in a Silesian Hospital in Poland. Pol J Microbiol. 2005;54(3):201-6.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc