1. Flynn CE, Guarner J. Emerging Antimicrobial Resistance. Mod Pathol. 2023;36(9):100249. [
DOI:10.1016/j.modpat.2023.100249] [
PMID]
2. Ranjbar R, Alam M. Antimicrobial Resistance Collaborators (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Evid.-Based Nurs. 2024;27(1):16. [
DOI:10.1136/ebnurs-2022-103540] [
PMID]
3. Reig S, Le Gouellec A, Bleves S. What Is New in the Anti-Pseudomonas aeruginosa Clinical Development Pipeline Since the 2017 WHO Alert?. Front Cell Infect Microbiol. 2022;12:909731. [
DOI:10.3389/fcimb.2022.909731] [
PMID] [
PMCID]
4. Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021;22(6):3128. [
DOI:10.3390/ijms22063128] [
PMID] [
PMCID]
5. Aghaee BL, Khan Mirzaei M, Alikhani MY, Mojtahedi A, Maurice CF. Improving the inhibitory effect of phages against Pseudomonas aeruginosa isolated from a burn patient using a combination of phages and antibiotics. Viruses. 2021;13(2):334. [
DOI:10.3390/v13020334] [
PMID] [
PMCID]
6. Wu DC, Chan WW, Metelitsa AI, Fiorillo L, Lin AN. Pseudomonas skin infection: clinical features, epidemiology, and management. Am J Clin Dermatol. 2011;12:157-69. [
DOI:10.2165/11539770-000000000-00000] [
PMID]
7. Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117-31. [
DOI:10.1007/s40265-021-01635-6] [
PMID] [
PMCID]
8. Marcus JE, Chung KK, Blyth DM. Burn Wound Infection. In Essential Burn Care for Non-Burn Specialists 2023 Jul 20 (pp. 213-231). Cham: Springer International Publishing. [
DOI:10.1007/978-3-031-28898-2_9]
9. Lashtoo Aghaee B, Alikhani M Y, van Leeuwen W B, Mojtahedi A, Kazemi S, Karami P. Conventional Treatment of Burn Wound Infections versus Phage Therapy. Iran J Med Microbiol. 2022;16(3):186-96. [
DOI:10.30699/ijmm.16.3.186]
10. Skowrońska W, Bazylko A. The Potential of Medicinal Plants and Natural Products in the Treatment of Burns and Sunburn-A Review. Pharmaceutics. 2023;15(2):633. [
DOI:10.3390/pharmaceutics15020633] [
PMID] [
PMCID]
11. Marashi SM, Nikkhahi F, Hamedi D, Shahbazi G. Isolation, Characterization and in vitro Evaluation of Specific Bacteriophages Targeting Extensive Drug Resistance Strains of Pseudomonas aeruginosa Isolated from Septic Burn Wounds. Infect Chemother. 2022;54(1):153-64. [
DOI:10.3947/ic.2021.0132] [
PMID] [
PMCID]
12. Merabishvili M, Monserez R, Van Belleghem J, Rose T, Jennes S, De Vos D, et al. Stability of bacteriophages in burn wound care products. PLoS One. 2017;12(7):e0182121. [
DOI:10.1371/journal.pone.0182121] [
PMID] [
PMCID]
13. Hatfull GF, Dedrick RM, Schooley RT. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annu Rev Med. 2022;73:197-211. [
DOI:10.1146/annurev-med-080219-122208] [
PMID]
14. Huemer M, Mairpady Shambat S, Brugger SD, Zinkernagel AS. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO reports. 2020;21(12):e51034. [
DOI:10.15252/embr.202051034] [
PMID] [
PMCID]
15. Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann Clinical Microbiol Antimicrob. 2020;19:1-7. [
DOI:10.1186/s12941-020-00389-5] [
PMID] [
PMCID]
16. Jończyk-Matysiak E, Łodej N, Kula D, Owczarek B, Orwat F, Międzybrodzki R, et al. Factors determining phage stability/activity: Challenges in practical phage application. Expert Rev Anti-infect Ther. 2019;17(8):583-606. [
DOI:10.1080/14787210.2019.1646126] [
PMID]
17. Sutherland R, Boon RJ, Griffin KE, Masters PJ, Slocombe B, White AR .Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrob Agents Chemother. 1985;27(4): 495-8. [
DOI:10.1128/AAC.27.4.495] [
PMID] [
PMCID]
18. Ward A, Campoli-Richards DM. Mupirocin: A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1986;32:425-44. [
DOI:10.2165/00003495-198632050-00002] [
PMID]
19. Parenti MA, Hatfield SM, Leyden JJ. Mupirocin: a topical antibiotic with a unique structure and mechanism of action. Clin Pharm. 1987;6(10):761-770.
20. Bryskier A. Mupirocin In: Bryskier A, editor. Antimicrobial agents. ASM Press: American Society for Microbiology; 2005. pp 964-71. [
DOI:10.1128/9781555815929.ch36]
21. Bryskier A. Peptide antibiotics In: Bryskier A, editor. Antimicrobial agents. ASM Press: American Society for Microbiology; 2005. pp. 826-79. [
DOI:10.1128/9781555815929.ch30]
22. Ashkani-Esfahani S, Imanieh MH, Khoshneviszadeh M, Meshksar A, Noorafshan A, Geramizadeh B, et al. The healing effect of arnebia euchroma in second degree burn wounds in rat as an animal model. Iran Red Crescent Med J. 2012;14(2):70-4.
23. Nasiri E, Hosseinimehr SJ, Azadbakht M, Akbari J, Enayati-Fard R, Azizi S, et al. The Healing Effect of Arnebia Euchroma Ointment versus Silver Sulfadiazine on Burn Wounds in Rat. World J Plast Surg. 2015;4(2):134-44. [
DOI:10.1515/jcim-2014-0068] [
PMID]
24. Mangalea MR, Duerkop BA. Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Infect Immun. 2020;88(7):e00926-19. [
DOI:10.1128/IAI.00926-19] [
PMID] [
PMCID]
25. Laure NN, Ahn J. Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microb Pathog. 2022;171:105732. [
DOI:10.1016/j.micpath.2022.105732] [
PMID]
26. Fujiki J, Nakamura K, Nakamura T, Iwano H. Fitness Trade-Offs between Phage and Antibiotic Sensitivity in Phage-Resistant Variants: Molecular Action and Insights into Clinical Applications for Phage Therapy. Int J Mol Sci. 2023;24(21):15628. [
DOI:10.3390/ijms242115628] [
PMID] [
PMCID]
27. Van Nieuwenhuyse B, Van der Linden D, Chatzis O, Lood C, Wagemans J, Lavigne R, et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun. 2022;13(1):5725. [
DOI:10.1038/s41467-022-33294-w] [
PMID] [
PMCID]
28. Hasan M, Dawan J, Ahn J. Assessment of the potential of phage-antibiotic synergy to induce collateral sensitivity in Salmonella Typhimurium. Microb Pathog. 2023;180:106134. [
DOI:10.1016/j.micpath.2023.106134] [
PMID]
29. Majkowska-Skrobek G, Markwitz P, Sosnowska E, Lood C, Lavigne R, Drulis-Kawa Z. The evolutionary trade-offs in phage-resistant Klebsiella pneumoniae entail cross-phage sensitization and loss of multidrug resistance. Environ Microbiol. 2021;23(12):7723-40. [
DOI:10.1111/1462-2920.15476] [
PMID]
30. Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG, Barahman R, et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A. 2020;117(21):11207-16. [
DOI:10.1073/pnas.1919888117] [
PMID] [
PMCID]
31. Burmeister AR, Turner PE. Trading-off and trading-up in the world of bacteria-phage evolution. Curr Biol. 2020;30(19):R1120-R4. [
DOI:10.1016/j.cub.2020.07.036] [
PMID] [
PMCID]