year 18, Issue 1 (January - February 2024)                   Iran J Med Microbiol 2024, 18(1): 16-24 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Alipour A H, Najafi H, Ziafati Kafi Z, Hashemi S M A, Sarvari J, Ghalyanchi Langeroudi A. Exploring EBNA1-Mediated Regulation of Key Cellular Genes in Glioblastoma Multiforme: Implications for EBV-Associated Pathogenesis. Iran J Med Microbiol 2024; 18 (1) :16-24
1- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
2- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
3- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran ,
Abstract:   (391 Views)

Background and Aim: Infection with Epstein-Barr virus (EBV) ranks as one of the most substantial risk factors associated with Glioblastoma multiforme (GBM). At the core of this intricate relationship lies the EBV nuclear antigen-1 (EBNA1) protein, a central figure with a remarkable ability to regulate the expression of both cellular and viral genes. This research delves into the impact of EBNA1 on the expression patterns of four cellular genes - MDMX, MDM2, MYC, and BIRC5 in the U87MG cell line.
Materials and Methods: We divided U87MG cells into two distinct groups. The first group involved cells that were transfected with a plasmid containing the EBNA1 gene, while the second group consisted of cells that were transfected with a control plasmid. To evaluate the transcriptional activity of MDMX, MDM2, MYC, and BIRC5 genes in both sets of cells, we employed a real-time PCR technique. Any observed differences were considered statistically significant if the associated P-values were less than 0.05.
Results: Our findings demonstrated a substantial three-fold increase in the expression of the MDMX gene when U87MG cells were transfected with EBNA1 plasmid (P=0.02). Although the cells transfected with EBNA1 plasmid displayed great elevations in the expression levels of MDM2, MYC, and BIRC5 genes, these alterations were not statistically significant.
Conclusion: The outcomes of this investigation have unveiled that EBNA1 has the ability to trigger the expression of four crucial cellular genes, which wield substantial influence in the genesis of GBM within glioblastoma astrocytoma cells. This underscores the potential impact of EBNA1 on the evolution of GBM, particularly in individuals harboring EBV.

Full-Text [PDF 609 kb]   (54 Downloads)    
Type of Study: Original Research Article | Subject: Medical Virology
Received: 2023/12/5 | Accepted: 2024/02/16 | ePublished: 2024/03/18

1. Bleeker FE, Molenaar RJ, Leenstra S. Recent advances in the molecular understanding of glioblastoma. J Neuro-Oncol. 2012;108:11-27. [DOI:10.1007/s11060-011-0793-0] [PMID] [PMCID]
2. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev. 2017;18(1):3.
3. de Oliveira DE, Müller-Coan BG, Pagano JS. Viral carcinogenesis beyond malignant transformation: EBV in the progression of human cancers. Trends Microbiol. 2016;24(8):649-64. [DOI:10.1016/j.tim.2016.03.008] [PMID] [PMCID]
4. Kofman A, Marcinkiewicz L, Dupart E, Lyshchev A, Martynov B, Ryndin A, et al. The roles of viruses in brain tumor initiation and oncomodulation. J Neuro-Oncol. 2011;105:451-66. [DOI:10.1007/s11060-011-0658-6] [PMID] [PMCID]
5. Epstein MA, Achong BG, Barr YM. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. The Lancet. 1964;283(7335):702-3. [DOI:10.1016/S0140-6736(64)91524-7] [PMID]
6. Zhang G, Yu Z, Shen G, Chai Y, Liang C. Association between Epstein-Barr virus and Thymic epithelial tumors: a systematic review. Infect. Agents Cancer. 2019;14:1-8. [DOI:10.1186/s13027-019-0254-5] [PMID] [PMCID]
7. Khalil M, Enzinger C, Wallner-Blazek M, Scarpatetti M, Barth A, Horn S, et al. Epstein-Barr virus encephalitis presenting with a tumor-like lesion in an immunosuppressed transplant recipient. J Neurovirol. 2008;14(6):574-8. [DOI:10.1080/13550280802345715] [PMID]
8. Fujimoto H, Asaoka K, Imaizumi T, Ayabe M, Shoji H, Kaji M. Epstein-Barr virus infections of the central nervous system. Intern Med. 2003;42(1):33-40. [DOI:10.2169/internalmedicine.42.33] [PMID]
9. Menet A, Speth C, Larcher C, Prodinger WM, Schwendinger MG, Chan P, et al. Epstein-Barr virus infection of human astrocyte cell lines. J Virol. 1999;73(9):7722-33. [DOI:10.1128/JVI.73.9.7722-7733.1999] [PMID] [PMCID]
10. Gasque P, Chan P, Mauger C, Schouft MT, Singhrao S, Dierich MP, et al. Identification and characterization of complement C3 receptors on human astrocytes. J Immunol. 1996;156(6):2247-55. [DOI:10.4049/jimmunol.156.6.2247] [PMID]
11. Sugita Y, Muta H, Ohshima K, Morioka M, Tsukamoto Y, Takahashi H, et al. Primary central nervous system lymphomas and related diseases: Pathological characteristics and discussion of the differential diagnosis. Neuropathol. 2016;36(4):313-24. [DOI:10.1111/neup.12276] [PMID]
12. Jiang L, Xie C, Lung HL, Lo KW, Law GL, Mak NK, et al. EBNA1-targeted inhibitors: Novel approaches for the treatment of Epstein-Barr virus-associated cancers. Theranostics. 2018;8(19):5307-19. [DOI:10.7150/thno.26823] [PMID] [PMCID]
13. Wood VH, O'neil JD, Wei W, Stewart SE, Dawson CW, Young LS. Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFβ signaling pathways. Oncogene. 2007;26(28):4135-47. [DOI:10.1038/sj.onc.1210496] [PMID]
14. Sompallae R, Callegari S, Kamranvar SA, Masucci MG. Transcription profiling of Epstein-Barr virus nuclear antigen (EBNA)-1 expressing cells suggests targeting of chromatin remodeling complexes. PloS One. 2010;5(8):e12052. [DOI:10.1371/journal.pone.0012052] [PMID] [PMCID]
15. Song Q, Liu XQ, Rainey JK. 1H, 15N and 13C backbone resonance assignments of the acidic domain of the human MDMX protein. Biomol NMR Assign. 2022;16(1):171-8. [DOI:10.1007/s12104-022-10081-8] [PMID]
16. Jeyaraj S, O'Brien DM, Chandler DS. MDM2 and MDM4 splicing: an integral part of the cancer spliceome. Front Biosci. 2009;14:2647-56. [DOI:10.2741/3402] [PMID]
17. Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene-the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022;19(1):23-36. [DOI:10.1038/s41571-021-00549-2] [PMID] [PMCID]
18. Li F, Aljahdali I, Ling X. Cancer therapeutics using survivin BIRC5 as a target: what can we do after over two decades of study?. J Exp Clin Cancer Res. 2019;38(1):368. [DOI:10.1186/s13046-019-1362-1] [PMID] [PMCID]
19. Sah NK, Khan Z, Khan GJ, Bisen PS. Structural, functional and therapeutic biology of survivin. Cancer lett. 2006;244(2):164-71. [DOI:10.1016/j.canlet.2006.03.007] [PMID]
20. Hashemi SM, Moradi A, Hosseini SY, Nikoo HR, Bamdad T, Razmkhah M, et al. EBNA1 Upregulates P53-Inhibiting Genes in Burkitt's Lymphoma Cell Line. Rep Biochem Mol Biol. 2023;11(4):672-83. [DOI:10.52547/rbmb.11.4.672] [PMID] [PMCID]
21. Hashemi SM, Moradi A, Hosseini SY, Nikoo HR, Bamdad T, Faghih Z, et al. A New Insight Into p53-Inhibiting Genes in Epstein-Barr Virus-Associated Gastric Adenocarcinoma. Iran Biomed J. 2023;27(1):34-45. [DOI:10.52547/ibj.3784] [PMID] [PMCID]
22. Alipour AH, Hashemi SM, Moattari A, Farhadi A, Sarvari J. Epstein-Barr Virus Nuclear Antigen 1 Increases the Expression of HPV Type 18 E6 and E7 Oncogenes and BIRC5/C-MYC Cellular Genes in the Hela Cell Line. Int J Mol and Cell Med. 2022;11(4):346-56.
23. Schiller JT, Lowy DR. An Introduction to Virus Infections and Human Cancer. In: Wu TC, Chang MH, Jeang KT (eds). Viruses and Human Cancer. Recent Results in Cancer Research, Vol 217. 2021. Springer, Cham. [DOI:10.1007/978-3-030-57362-1_1] [PMID] [PMCID]
24. Ayee R, Ofori ME, Wright E, Quaye O. Epstein Barr virus associated lymphomas and epithelia cancers in humans. J Cancer. 2020;11(7):1737-50. [DOI:10.7150/jca.37282] [PMID] [PMCID]
25. Ghoreshi Z, Molaei H, Arefinia N. The role of DNA viruses in human cancer. Cancer Inform. 2023;22:11769351231154186. [DOI:10.1177/11769351231154186] [PMID] [PMCID]
26. Ghaffari H, Tavakoli A, Faranoush M, Naderi A, Kiani SJ, Sadeghipour A, et al. Molecular Investigation of Human Cytomegalovirus and Epstein-Barr virus in Glioblastoma Brain Tumor: A Case-Control Study in Iran. Iran Biomes J. 2021;25(6):426-33. [DOI:10.52547/ibj.25.6.426] [PMID] [PMCID]
27. Fonseca RF, Rosas SL, Oliveira JA, Teixeira A, Alves G, Carvalho MD. Frequency of Epstein-Barr virus DNA sequences in human gliomas. Sao Paulo Med J. 2015;133:51-4. [DOI:10.1590/1516-3180.2013.1912814] [PMID] [PMCID]
28. Frappier L. The Epstein-Barr Virus EBNA1 Protein. Scientifica. 2012;2012:438204. [DOI:10.6064/2012/438204] [PMID] [PMCID]
29. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, et al. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1: implications for EBV-mediated immortalization. Mol Cell. 2005;18(1):25-36. [DOI:10.1016/j.molcel.2005.02.029] [PMID]
30. Boudreault S, Armero VE, Scott MS, Perreault JP, Bisaillon M. The Epstein-Barr virus EBNA1 protein modulates the alternative splicing of cellular genes. Virol J. 2019;16:29. [DOI:10.1186/s12985-019-1137-5] [PMID] [PMCID]
31. Coppotelli G, Mughal N, Callegari S, Sompallae R, Caja L, Luijsterburg MS, et al. The Epstein-Barr virus nuclear antigen-1 reprograms transcription by mimicry of high mobility group A proteins. Nucleic Acids Res. 2013;41(5):2950-62. [DOI:10.1093/nar/gkt032] [PMID] [PMCID]
32. Canaan A, Haviv I, Urban AE, Schulz VP, Hartman S, Zhang Z, et al. EBNA1 regulates cellular gene expression by binding cellular promoters. Proceedings of the National Academy of Sciences. 2009;106(52):22421-6. [DOI:10.1073/pnas.0911676106] [PMID] [PMCID]
33. Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007;39(7-8):1476-82. [DOI:10.1016/j.biocel.2007.03.022] [PMID] [PMCID]
34. Swetzig WM, Wang J, Das GM. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget. 2016;7(13):16049-69. [DOI:10.18632/oncotarget.7533] [PMID] [PMCID]
35. Marine JC, Jochemsen AG. MDMX (MDM4), a Promising Target for p53 Reactivation Therapy and Beyond. Cold Spring Harb Perspect Med. 2016;6(7):a026237. [DOI:10.1101/cshperspect.a026237] [PMID] [PMCID]
36. Her NG, Oh JW, Oh YJ, Han S, Cho HJ, Lee Y, et al. Potent effect of the MDM2 inhibitor AMG232 on suppression of glioblastoma stem cells. Cell Death Dis. 2018;9(8):792. [DOI:10.1038/s41419-018-0825-1] [PMID] [PMCID]
37. Dunn GP, Rinne ML, Wykosky J, Genovese G, Quayle SN, Dunn IF, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26(8):756-84. [DOI:10.1101/gad.187922.112] [PMID] [PMCID]
38. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-8. [DOI:10.1038/nature07385] [PMID] [PMCID]
39. AACR Project Genie Consortium, AACR Project GENIE Consortium, André F, Arnedos M, Baras AS, Baselga J, et al. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017;7(8):818-31. [DOI:10.1158/2159-8290.CD-17-0151] [PMID] [PMCID]
40. Riemenschneider MJ, Büschges R, Wolter M, Reifenberger J, Boström J, Kraus JA, et al. Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res. 1999;59(24):6091-6.
41. Arjona D, Bello MJ, Alonso ME, Isla A, De Campos JM, Vaquero J, et al. Real-time quantitative PCR analysis of regions involved in gene amplification reveals gene overdose in low-grade astrocytic gliomas. Diagn Mol Pathol. 2005;14(4):224-9. [DOI:10.1097/01.pas.0000177799.58336.1a] [PMID]
42. Spiegelberg D, Mortensen AC, Lundsten S, Brown CJ, Lane DP, Nestor M. The MDM2/MDMX-p53 antagonist PM2 radiosensitizes wild-type p53 tumors. Cancer Res. 2018;78(17):5084-93. [DOI:10.1158/0008-5472.CAN-18-0440] [PMID]
43. Pearson JR, Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther. 2017;2(1):17040. [DOI:10.1038/sigtrans.2017.40] [PMID] [PMCID]
44. Zhang Y, Dube C, Gibert Jr M, Cruickshanks N, Wang B, Coughlan M, et al. The p53 pathway in glioblastoma. Cancers. 2018;10(9):297. [DOI:10.3390/cancers10090297] [PMID] [PMCID]
45. Reifenberger G, Liu L, Ichimura K, Schmidt EE, Collins VP. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993;53(12):2736-9.
46. Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976-90. [DOI:10.1038/nrc2231] [PMID]
47. Swartling FJ. Myc proteins in brain tumor development and maintenance. Upsala J Med Sci. 2012;117(2):122-31. [DOI:10.3109/03009734.2012.658975] [PMID] [PMCID]
48. Chattopadhyay P, Banerjee M, Sarkar C, Mathur M, Mohapatra AK, Sinha S. Infrequent alteration of the c-myc gene in human glial tumours associated with increased numbers of c-myc positive cells. Oncogene. 1995;11(12):2711-4.
49. Orian JM, Vasilopoulos K, Yoshida S, Kaye AH, Chow CW, Gonzales MF. Overexpression of multiple oncogenes related to histological grade of astrocytic glioma. Br J Cancer. 1992;66(1):106-12. [DOI:10.1038/bjc.1992.225] [PMID] [PMCID]
50. Zhao K, Wang Q, Wang Y, Huang K, Yang C, Li Y, et al. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett. 2017;406:12-21. [DOI:10.1016/j.canlet.2017.07.022] [PMID]
51. Xu Q, Ahmed AK, Zhu Y, Wang K, Lv S, Li Y, et al. Oncogenic MicroRNA-20a is downregulated by the HIF-1α/c-MYC pathway in IDH1 R132H-mutant glioma. Biochem Biophys Res Commun. 2018;499(4):882-8. [DOI:10.1016/j.bbrc.2018.04.011] [PMID]
52. Luo H, Chen Z, Wang S, Zhang R, Qiu W, Zhao L, et al. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain. 2015;138(12):3654-72. [DOI:10.1093/brain/awv287] [PMID]
53. Zhang G, Zhu Q, Fu G, Hou J, Hu X, Cao J, et al. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br J Cancer. 2019;121(12):1069-78. [DOI:10.1038/s41416-019-0633-0] [PMID] [PMCID]
54. Ding Z, Liu X, Liu Y, Zhang J, Huang X, Yang X, et al. Expression of far upstream element (FUSE) binding protein 1 in human glioma is correlated with c‐Myc and cell proliferation. Mol Carcinog. 2015;54(5):405-15. [DOI:10.1002/mc.22114] [PMID]
55. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, et al. c-Myc is required for maintenance of glioma cancer stem cells. PloS One. 2008;3(11):e3769. [DOI:10.1371/journal.pone.0003769] [PMID] [PMCID]
56. Jaskoll T, Chen H, Min Zhou Y, Wu D, Melnick M. Developmental expression of survivin during embryonic submandibular salivary gland development. BMC Dev Biol. 2001;1:5. [DOI:10.1186/1471-213X-1-5] [PMID] [PMCID]
57. Conde M, Michen S, Wiedemuth R, Klink B, Schröck E, Schackert G, et al. Chromosomal instability induced by increased BIRC5/Survivin levels affects tumorigenicity of glioma cells. BMC Cancer. 2017;17:889. [DOI:10.1186/s12885-017-3932-y] [PMID] [PMCID]
58. Sheng L, Wan B, Feng P, Sun J, Rigo F, Bennett CF, et al. Downregulation of Survivin contributes to cell-cycle arrest during postnatal cardiac development in a severe spinal muscular atrophy mouse model. Hum Mol Genet. 2018;27(3):486-98. [DOI:10.1093/hmg/ddx418] [PMID] [PMCID]
59. Ye HB, Ma BJ, Meng GQ, Tao S, Wang Y, Chen Z, et al. Bioinformatics analysis of BIRC5 in human cancers. Ann Transl Med. 2022;10(16):888. [DOI:10.21037/atm-22-3496] [PMID] [PMCID]
60. Li PL, Zhang X, Wang LL, Du LT, Yang YM, Li J, et al. MicroRNA-218 is a prognostic indicator in colorectal cancer and enhances 5-fluorouracil-induced apoptosis by targeting BIRC5. Carcinogenesis. 2015;36(12):1484-93. [DOI:10.1093/carcin/bgv145] [PMID]
61. Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R, et al. Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology. 2011;410(1):64-75. [DOI:10.1016/j.virol.2010.10.029] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc