year 17, Issue 6 (November - December 2023)                   Iran J Med Microbiol 2023, 17(6): 669-679 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghani Champiri I, Bamzadeh Z, Rahimi E, Rouhi L. Isolation of Lactic Acid Bacteria from Local Yogurt Samples in Chaharmahal and Bakhtiari Province: The Assessment of Probiotic Characteristics. Iran J Med Microbiol 2023; 17 (6) :669-679
1- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran ,
3- Department of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
4- Cellular and Developmental Research Center, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Abstract:   (520 Views)

Background and Aim: The present study investigates the probiotic, antibacterial, technological, and safety properties of lactic acid bacteria (LAB) isolated from traditional yogurt in Chaharmahal and Bakhtiari, Iran.
Materials and Methods: After serial dilution, culture was carried out in MRS culture media with 19 distinct rods bacteria. The gram-positive and catalase-negative LAB isolates were identified using Gram Staining, catalase, H2S, Indole, Motility and Oxidase biochemical assays, carbohydrate fermentation patterns, and 16S rDNA analysis. Then their probiotic potential (resistance to stomach acid and bile salt, hydrophobicity, auto-aggregation and co-aggregation, adherence capacity, and safety analysis) was evaluated.
Results: It was found that LAB strains belonged to Seven species belonging to five genera, including L. plantarum, L. brevis, L. rhamnosus, L. paracasei, L. casei, L. fermentum, and L. jensenii. After three hours of incubation at pH 2, strains lost 3–6 log units with L. rhamnosus strain IDC-D21 and L. paracasei strain DBR-D20, showing the most resilience to low pH and simulated GIT juices. The L. rhamnosus strain IDC-D21 and L. plantarum strain LRO-7 strains had the highest and lowest hydrophobicity (34.8 and 25.6%), respectively. Besides, the L. rhamnosus strain IDC-D21 had the highest degree of auto-aggregation (17.29%), followed by the L. paracasei strain DBR-D20 (14.28%). Also, the L. rhamnosus strain IDC-D21 showed the highest co-aggregation degree (19.07%).
Conclusion: According to the research findings, L. rhamnosus strain IDC-D21 is recommended for application as a coculture in the dairy industry. Indeed, it has the best probiotic and technical features.

Full-Text [PDF 744 kb]   (147 Downloads) |   |   Full-Text (HTML)  (35 Views)  
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2023/07/17 | Accepted: 2023/09/9 | ePublished: 2024/01/29

1. Koirala S, Anal AK. Probiotics-based foods and beverages as future foods and their overall safety and regulatory claims. Future Foods. 2021;3:100013. [DOI:10.1016/j.fufo.2021.100013]
2. Borremans A, Smets R, Van Campenhout L. Fermentation versus meat preservatives to extend the shelf life of mealworm (Tenebrio molitor) paste for feed and food applications. Front Microbiol. 2020;11:1510. [DOI:10.3389/fmicb.2020.01510] [PMID] [PMCID]
3. García-Burgos M, Moreno-Fernández J, Alférez MJ, Díaz-Castro J, López-Aliaga I. New perspectives in fermented dairy products and their health relevance. J Funct Foods. 2020;72(2):104059. [DOI:10.1016/j.jff.2020.104059]
4. Sharma R, Garg P, Kumar P, Bhatia SK, Kulshrestha S. Microbial fermentation and its role in quality improvement of fermented foods. Fermentation. 2020;6(4):106. [DOI:10.3390/fermentation6040106]
5. Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: A fresh perspective. Food Sci Hum Wellness. 2019;8(3):203-43. [DOI:10.1016/j.fshw.2019.08.003]
6. Fenster K, Freeburg B, Hollard C, Wong C, Rønhave Laursen R, Ouwehand AC. The production and delivery of probiotics: A review of a practical approach. Microorganisms. 2019;7(3):83. [DOI:10.3390/microorganisms7030083] [PMID] [PMCID]
7. Śliżewska K, Markowiak-Kopeć P, Śliżewska W. The role of probiotics in cancer prevention. Cancers. 2021;13(1):20. [DOI:10.3390/cancers13010020] [PMID] [PMCID]
8. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol. 2015;6:58. [DOI:10.3389/fmicb.2015.00058] [PMID] [PMCID]
9. Markowiak P, Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients. 2017;9(9):1021. [DOI:10.3390/nu9091021] [PMID] [PMCID]
10. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, et al. Criteria to qualify microorganisms as "probiotic" in foods and dietary supplements. Front Microbiol. 2020;11:1662. [DOI:10.3389/fmicb.2020.01662] [PMID] [PMCID]
11. Peivasteh-Roudsari L, Pirhadi M, Karami H, Tajdar-Oranj B, Molaee-Aghaee E, Sadighara P. Probiotics and food safety: an evidence-based review. J Food Microbiol Saf Hyg. 2019;5(1):1-9. [DOI:10.18502/jfsh.v5i1.3878]
12. Stevens B, Jolly C, Jolliffe J. A new era of digitalisation for ocean sustainability?: Prospects, benefits, challenges. No. 111. OECD Publishing; 2021.
13. Usta C. Microorganisms in Biological Pest Control - A Review (Bacterial Toxin Application and Effect of Environmental Factors) [Internet]. Current Progress in Biological Research. InTech Publishing; 2013. [DOI:10.5772/55786]
14. García-Cano I, Rocha-Mendoza D, Ortega-Anaya J, Wang K, Kosmerl E, Jiménez-Flores R. Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic and antibacterial proteins. Appl Microbiol Biotechnol. 2019;103(13):5243-57. [DOI:10.1007/s00253-019-09844-6] [PMID] [PMCID]
15. Piri Gharaghie T, Doosti A, Mirzaei SA. Detection of T6SS secretory system and membrane purine involved in antibiotic resistance in multidrug-resistant Acinetobacter baumannii isolates. J Microbiol World. 2021;14(1):47-58.
16. Muehlhoff E, Bennett A. Milk and dairy products in human nutrition. Italy, Rome: Food and Agriculture Organization of the United Nations (FAO) Publishing; 2013. Available online: []
17. Abdian N, Ghasemi-Dehkordi P, Hashemzadeh-Chaleshtori M, Ganji-Arjenaki M, Doosti A, Amiri B. Comparison of human dermal fibroblasts (HDFs) growth rate in culture media supplemented with or without basic fibroblast growth factor (bFGF). Cell Tissue Bank. 2015;16:487-95. [DOI:10.1007/s10561-015-9494-9] [PMID]
18. Miranda C, Contente D, Igrejas G, Câmara SP, Dapkevicius MdLE, Poeta P. Role of exposure to lactic acid bacteria from foods of animal origin in human health. Foods. 2021;10(9):2092. [DOI:10.3390/foods10092092] [PMID] [PMCID]
19. Ghorbani-Dalini S, Kargar M, Doosti A, Abbasi P, Sarshar M. Molecular epidemiology of ESBL genes and multi-drug resistance in diarrheagenic Escherichia coli strains isolated from adults in Iran. Iran J Pharm Res. 2015;14(4):1257-62.
20. Montemurro M, Pontonio E, Coda R, Rizzello CG. Plant-based alternatives to yogurt: State-of-the-art and perspectives of new biotechnological challenges. Foods. 2021;10(2):316. [DOI:10.3390/foods10020316] [PMID] [PMCID]
21. Abiri R, Aliabadi M, Kadivarian S, Borji S, Moradi J, Alvandi A. Potentially Probiotic Bacteria Isolated from Preparation Stages of Kermanshahi Traditional Fat. Iran J Med Microbiol. 2021;15(3):352-60. [DOI:10.30699/ijmm.15.3.352]
22. Agostini C, Eckert C, Vincenzi A, Machado BL, Jordon BC, Kipper JP, et al. Characterization of technological and probiotic properties of indigenous Lactobacillus spp. from south Brazil. 3 Biotech. 2018;8:1-12. [DOI:10.1007/s13205-018-1469-7] [PMID] [PMCID]
23. Barzegar H, Alizadeh Behbahani B, Falah F. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr. 2021;9(8):4094-107. [DOI:10.1002/fsn3.2365] [PMID] [PMCID]
24. Dubernet S, Desmasures N, Guéguen M. A PCR-based method for identification of lactobacilli at the genus level. FEMS Microbiol Lett. 2002;214(2):271-5. [DOI:10.1111/j.1574-6968.2002.tb11358.x] [PMID]
25. Kumar A, Kumar D. Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe. 2015;33:117-23. [DOI:10.1016/j.anaerobe.2015.03.004] [PMID]
26. Hojjati M, Behabahani BA, Falah F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb Pathog. 2020;147:104420. [DOI:10.1016/j.micpath.2020.104420] [PMID]
27. Mishra V, Prasad D. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int J Food Microbiol. 2005;103(1):109-15. [DOI:10.1016/j.ijfoodmicro.2004.10.047] [PMID]
28. Dehghani Champiri I, Bamzadeh Z, Rahimi E, Rouhi L. Isolation and identification of Lactobacillus brevis from cottage cheese of Bazoft City, Iran and evaluation of its antimicrobial activity against some pathogenic microorganisms. Iran J Microbiol. 2022;16(1):17-34. [DOI:10.30699/ijmm.16.1.17]
29. Piri-Gharaghie T, Ghajari G, Hassanpoor M, Jegargoshe-Shirin N, Soosanirad M, Khayati S, et al. Investigation of antibacterial and anticancer effects of novel niosomal formulated Persian Gulf Sea cucumber extracts. Heliyon. 2023;9(3). [DOI:10.1016/j.heliyon.2023.e14149] [PMID] [PMCID]
30. Vesterlund S, Vankerckhoven V, Saxelin M, Goossens H, Salminen S, Ouwehand AC. Safety assessment of Lactobacillus strains: presence of putative risk factors in faecal, blood and probiotic isolates. Int J Food Microbiol. 2007;116(3):325-31. [DOI:10.1016/j.ijfoodmicro.2007.02.002] [PMID]
31. Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, et al. Evaluation of probiotic properties and safety of Enterococcus faecium isolated from artisanal Tunisian meat "Dried Ossban". Front Microbiol. 2018;9:1685. [DOI:10.3389/fmicb.2018.02607] [DOI:10.3389/fmicb.2018.01685] [PMID] [PMCID]
32. ARAÚJO LMd. Avaliação de propriedades probióticas de bactérias ácido láticas isoladas de queijo coalho do sertão da Paraíba: Universidade Federal de Pernambuco; 2017.
33. Feyhl-Buska J, Chen Y, Jia C, Wang J-X, Zhang CL, Boyd ES. Influence of growth phase, pH, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Front Microbiol. 2016;7:1323. [DOI:10.3389/fmicb.2016.01323] [PMID] [PMCID]
34. Ashraf R, Smith S. Commercial lactic acid bacteria and probiotic strains-tolerance to bile, pepsin and antibiotics. Int Food Res J. 2016;23(2):777-89.
35. Gilliland S. Beneficial interrelationships between certain microorganisms and humans: candidate microorganisms for use as dietary adjuncts. J Food Prot. 1979;42(2):164-7. [DOI:10.4315/0362-028X-42.2.164] [PMID]
36. Patel H, Pandiella S, Wang R, Webb C. Influence of malt, wheat, and barley extracts on the bile tolerance of selected strains of lactobacilli. Food Microbiol. 2004;21(1):83-9. [DOI:10.1016/S0740-0020(03)00016-9]
37. Gilliland S, Staley T, Bush L. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J Dairy Sci. 1984;67(12):3045-51. [DOI:10.3168/jds.S0022-0302(84)81670-7] [PMID]
38. Garriga, Pascual, Monfort, Hugas. Selection of lactobacilli for chicken probiotic adjuncts. J Appl Microbiol. 1998;84(1):125-32. [DOI:10.1046/j.1365-2672.1997.00329.x] [PMID]
39. Victor SD, François ZN, Marie KP, Alberto C, Florence F. Probiotic properties of lactobacilli strains isolated from raw cow milk in the western highlands of Cameroon. Innov Rom Food Biotechnol. 2011(9):12-28.
40. Feng Y, Qiao L, Liu R, Yao H, Gao C. Potential probiotic properties of lactic acid bacteria isolated from the intestinal mucosa of healthy piglets. Ann Microbiol. 2017;67(3):239-53. [DOI:10.1007/s13213-017-1254-6]
41. Guan C, Chen X, Jiang X, Zhao R, Yuan Y, Chen D, et al. In vitro studies of adhesion properties of six lactic acid bacteria isolated from the longevous population of China. RSC Advances. 2020;10(41):24234-40. [DOI:10.1039/D0RA03517C] [PMID] [PMCID]
42. Cozzolino A, Vergalito F, Tremonte P, Iorizzo M, Lombardi SJ, Sorrentino E, et al. Preliminary evaluation of the safety and probiotic potential of Akkermansia muciniphila DSM 22959 in comparison with Lactobacillus rhamnosus GG. Microorganisms. 2020;8(2):189. [DOI:10.3390/microorganisms8020189] [PMID] [PMCID]
43. Jena PK, Trivedi D, Thakore K, Chaudhary H, Giri SS, Seshadri S. Isolation and characterization of probiotic properties of lactobacilli isolated from rat fecal microbiota. Microbiol Immunol. 2013;57(6):407-16. [DOI:10.1111/1348-0421.12054] [PMID]
44. Grigoryan S, Bazukyan I, Trchounian A. Aggregation and adhesion activity of lactobacilli isolated from fermented products in vitro and in vivo: a potential probiotic strain. Probiotics Antimicrob Proteins. 2018;10:269-76. [DOI:10.1007/s12602-017-9283-9] [PMID]
45. Bergonzelli Gabriela E, Granato D, Pridmore Raymond D, Marvin-Guy Laure F, Donnicola D, Corthésy-Theulaz Irène E. GroEL of Lactobacillus johnsonii La1 (NCC 533) Is Cell Surface Associated: Potential Role in Interactions with the Host and the Gastric Pathogen Helicobacter pylori. Infection and Immunity. 2006;74(1):425-34. [DOI:10.1128/IAI.74.1.425-434.2006] [PMID] [PMCID]
46. Falah F, Vasiee A, Behbahani BA, Yazdi FT, Moradi S, Mortazavi SA, Roshanak S. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microb Pathog. 2019;131:246-53. [DOI:10.1016/j.micpath.2019.04.006] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc