year 17, Issue 5 (September - October 2023)                   Iran J Med Microbiol 2023, 17(5): 585-595 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khalid Ibrahim S. Phenotypic and Genotypic Analysis of Antibiotic Resistance in Proteus vulgaris Isolated from ICU Patients in Baghdad Hospitals. Iran J Med Microbiol 2023; 17 (5) :585-595
Department of Medical laboratory analysis, College of Health and medical techniques, Middle Technical University, Baghdad, Iraq ,
Abstract:   (709 Views)

Background and Aim: Proteus vulgaris, a Gram-negative bacterium, is a common cause of human infections, particularly urinary tract infections (UTIs). This study aimed to assess the multidrug resistance patterns of Proteus vulgaris isolated from diverse clinical samples, shedding light on its impact on healthcare-associated infections.
Materials and Methods: In this cross-sectional study, 300 clinical samples were collected, including 100 urine samples, 50 wound samples, 50 vaginal samples, 50 blood cultures, and 50 sputum samples. All samples were selected in the same number (50:50), except the urine samples (100) because the urine samples in this study were more available in the collection from the study patients, which gave more advanced UTIs. Phenotypic and molecular techniques were employed to identify and characterize these bacteria, focusing on detecting resistance genes such as UreC and blaCTX-M.
Results: Among the 300 clinical samples, 150 yielded positive cultures for Proteus species. These isolates were obtained from various clinical samples, including 48% from urine, 32% from wounds, 10% from vagina, 8% from blood, and 2% from sputum. Of the 100 P. vulgaris isolates, 88% harbored resistance genes on chromosomal DNA and plasmids. Specifically, 75% carried the UreC gene, and 50% carried the blaCTX-M gene. The highest prevalence of these resistant genes was observed in urine and wound pus samples.
Conclusion: This study revealed a concerning prevalence of highly resistant multidrug-resistant (MDR) P. vulgaris isolates, particularly in female urinary tract infections. The genomic presence of the UreC gene, which encodes the urease enzyme, and the blaCTX-M gene, which confers resistance to cefotaxime, underscores the urgency of effective antimicrobial strategies in combating these infections.

Full-Text [PDF 1022 kb]   (207 Downloads) |   |   Full-Text (HTML)  (135 Views)  
Type of Study: Original Research Article | Subject: Antibiotic Resistance
Received: 2023/06/22 | Accepted: 2023/08/29 | ePublished: 2023/11/29

1. O'Hara Caroline M, Brenner Frances W, Miller JM. Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev. 2000;13(4):534-46. [DOI:10.1128/CMR.13.4.534] [PMID] [PMCID]
2. Różalski A, Torzewska A, Moryl M, Iwona K, Agnieszka M, Kinga O, et al. Proteus sp.-an opportunistic bacterial pathogen-classification, swarming growth, clinical significance and virulence factors. Acta Univ Lodz Folia Biol Oecol. 2013(8):1-17. [DOI:10.2478/fobio-2013-0001]
3. Chen SL, Jackson SL, Boyko EJ. Diabetes Mellitus and Urinary Tract Infection: Epidemiology, Pathogenesis and Proposed Studies in Animal Models. J Urol. 2009;182(6, Supplement):S51-S6. [DOI:10.1016/j.juro.2009.07.090] [PMCID]
4. Foxman B. Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Clin Infect Dis. 2014;28(1):1-13. [DOI:10.1016/j.idc.2013.09.003] [PMID]
5. Nikaido H. Multidrug Resistance in Bacteria. Annu Rev Biochem. 2009;78(1):119-46. [DOI:10.1146/annurev.biochem.78.082907.145923] [PMID] [PMCID]
6. Georgios M, Egki T, Effrosyni S. Phenotypic and molecular methods for the detection of antibiotic resistance mechanisms in Gram negative nosocomial pathogens. Trends in infectious diseases2014. p. 139-62. [DOI:10.5772/57582]
7. Al-Bassam WW, Al-Kazaz A-K. The isolation and characterization of Proteus mirabilis from different clinical samples. J Biotech Res Cen. 2013;7(2):24-30. [DOI:10.24126/jobrc.2013.7.2.261]
8. Pandey JK, Narayan A, Tyagi S. Prevalence of Proteus species in clinical samples, antibiotic sensitivity pattern and ESBL production. Int J Curr Microbiol Appl Sci. 2013;2(10):253-61.
9. Sohn KM, Kang CI, Joo EJ, Ha YE, Chung DR, Peck KR, et al. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum β-lactamase production in Proteus mirabilis bacteremia. Korean J Intern Med. 2011;26(1):89-93. [DOI:10.3904/kjim.2011.26.1.89] [PMID] [PMCID]
10. Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034-43. [DOI:10.1111/j.1462-5822.2009.01323.x] [PMID]
11. Ghaima KK, Hamid HH, Hassan SF. Biofilm formation, Antibiotic resistance and Detection of mannose-resistant Proteus-like (MR/P) fimbriae genes in Proteus mirabilis isolated from UTI. Int J Chemtech Res. 2017;10(5):964-71.
12. Jones SM, Yerly J, Hu Y, Ceri H, Martinuzzi R. Structure of Proteus mirabilis biofilms grown in artificial urine and standard laboratory media. FEMS Microbiol Lett. 2007;268(1):16-21. [DOI:10.1111/j.1574-6968.2006.00587.x] [PMID]
13. O'Toole G, Kaplan HB, Kolter R. Biofilm Formation as Microbial Development. Annu Rev Microbiol. 2000;54(1):49-79. [DOI:10.1146/annurev.micro.54.1.49] [PMID]
14. Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623-33. [DOI:10.1038/nrmicro2415] [PMID]
15. Al-Sarray AJ, Al-Mussawi IM, Al-Noor TH, Abu-Zaid Y. Organo-Clay Composites of Intercalated 4-Methylaniline and Its Schiff Base Derivative: Preparation and Characterization. J Med Chem Sci. 2022;5(6):1094-101.
16. Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev. 2008;21(1):26-59. [DOI:10.1128/CMR.00019-07] [PMID] [PMCID]
17. Mishra M, Thakar YS, Pathak AA. Haemagglutination, Haemolysin Production And Serum Resistance of Proteus and Related Species Isolated From Clinical Sources. Indian J Med Microbiol. 2001;19(2):5-11. [DOI:10.1016/S0255-0857(21)03364-8] [PMID]
18. Apos, Hara CM, Brenner FW, Steigerwalt AG, Hill BC, Holmes B, et al. Classification of Proteus vulgaris biogroup 3 with recognition of Proteus hauseri sp. nov., nom. rev. and unnamed Proteus genomospecies 4, 5 and 6. Int J Sys Evol Microbiol. 2000;50(5):1869-75. [DOI:10.1099/00207713-50-5-1869] [PMID]
19. Obadire SO, Mitsan O, Ip U. Prevalence and Antibiotic Susceptibility Pattern of Proteus Species Isolated from Clinical Specimens from Selected Hospitals in Jigawa State, North-West Nigeria. Sokoto j Med lab Sci. 2022;7(4):27-34. [DOI:10.4314/sokjmls.v7i4.3]
20. Al-Sarray AJA. Molecular and electronic properties of Schiff bases derived from different aniline derivatives: density functional theory study. Eurasian Chem Commun. 2023;5(4):317-26.
21. Collee JG, Miles RS, Watt B. Tests for identification of bacteria. Mackie and McCartney practical medical microbiology1996. p. 131-49.
22. Al-Sarray AJA, Al-Kayat T, Mohammed BM, Al-assadi MJB, Abu-Zaid Y. Dielectric and Electrical Properties of Intercalated 1-(4-nitrophenyl)-N-(p-tolyl) methanimine into the Interlayers of Bentonite Clay. J Med Chem Sci. 2022;5(7):1321-30.
23. Koneman E, Allen S, Janda W, Schreckenberger P, Winn W. The enterobacteriaceae. Color atlas and textbook of diagnostic microbiology. 51997. p. 211-302.
24. Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4_ts):493-6. [DOI:10.1093/ajcp/45.4_ts.493] [PMID]
25. Wayne PA. Clinical and laboratory standards institute (CLSI). Performance standards for antimicrobial susceptibility testing2015.
26. Bahashwan SA, El Shafey HM. Antimicrobial resistance patterns of Proteus isolates from clinical specimens. Eur Sci J. 2013;9(27):57-63.
27. StepanoviĆ S, VukoviĆ D, Hola V, Bonaventura GD, DjukiĆ S, ĆIrkoviĆ I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
28. kadhim Al-Imam MJ, Al-Rubaii BAL. The influence of some amino acids, vitamins and anti-inflammatory drugs on activity of chondroitinase produced by Proteus vulgaris caused urinary tract infection. Iraqi J Sci. 2016;57:2412-21.
29. Kamil TD, Jarjes SF. Molecular Characterization of Proteus spp. from patients admitted to hospitals in Erbil City. Polytech J. 2021;11(2):95-9. [DOI:10.25156/ptj.v11n2y2021.pp95-99]
30. Ahmed OB, Asghar AH, Bahwerth FS. Prevalence of ESBL genes of Pseudomonas aeruginosa strains isolated from Makkah Hospitals, Saudi Arabia. Euro J Biol Med Sci Res. 2015;3(6):12-8.
31. Prasad RR, Shree V, Sagar S, Kumar S, Kumar P. Prevalence and antimicrobial susceptibility pattern of Proteus species in clinical samples. Int J Curr Microbiol App Sci. 2016;5(4):962-8. [DOI:10.20546/ijcmas.2016.504.109]
32. Al Kady LM, El Toukhy MAEH, El Shafie MAER, Mohammed HAEA, Mohammed Saber NI. Asymptomatic urinary tract infection by proteus mirabilis in rheumatoid arthritis patients. Zagazig Univ Med J. 2019;25(6):928-34. [DOI:10.21608/zumj.2019.10802.11360]
33. Mirzaei A, Habibi M, Bouzari S, Asadi Karam MR. Characterization of Antibiotic-Susceptibility Patterns, Virulence Factor Profiles and Clonal Relatedness in Proteus mirabilis Isolates from Patients with Urinary Tract Infection in Iran. Infect Drug Resist. 2019;12(null):3967-79. [DOI:10.2147/IDR.S230303] [PMID] [PMCID]
34. Pal N, Sharma N, Sharma R, Hooja S, Maheshwari RK. Prevalence of multidrug (MDR) and extensively drug resistant (XDR) Proteus species in a tertiary care hospital, India. Int J Curr Microbiol Appl Sci. 2014;3:243-52.
35. Mishu NJ, Shamsuzzaman SM, Khaleduzzaman HM, Nabonee MA. Nigha zannat dola, Azmeri haque. Association between Biofilm Formation and Virulence Genes Expression and Antibiotic Resistance Pattern in Proteus mirabilis, Isolated from Patients of Dhaka Medical College Hospital. Arch Clin Biomed Res. 2022;6:418-34.
36. Fm S, Se G, Ha A. Antimicrobial resistance of clinical Proteus mirabilis isolated from different sources. Zagazig j Pharm Sci. 2018;27(1):57-63. [DOI:10.21608/zjps.2018.38156]
37. Wasfi R, El-Rahman OAA, Mansour LE, Hanora AS, Hashem AM, Ashour MS. Antimicrobial activities against biofilm formed by Proteus mirabilis isolates from wound and urinary tract infections. Indian J Med Microbiol. 2012;30(1):76-80. [DOI:10.4103/0255-0857.93044] [PMID]
38. Passat DNF. Local Study of blaCTX-M genes detection in Proteus spp. by using PCR technique. Iraqi J Sci. 2016;57((2C)):1371-6.
39. Hamid SF, Taha AB, Abdulwahid MJ. Distribution of blaTEM, blaSHV, blaCTX-M, blaOXA, and blaDHA in Proteus mirabilis Isolated from Diabetic Foot Infections in Erbil, Iraq. Cell Mol Biol. 2020;66(1):88-94. [DOI:10.14715/cmb/2019.66.1.15]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc