year 17, Issue 5 (September - October 2023)                   Iran J Med Microbiol 2023, 17(5): 571-584 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fathi M, Barzegari E, Lotfollahi L, Jafari R, Nomanpour B, Rasekhian M. Outer membrane Proteins-focused Pseudomonas aeruginosa Vaccine Designed using Reverse Vaccinology. Iran J Med Microbiol 2023; 17 (5) :571-584
URL: http://ijmm.ir/article-1-2125-en.html
1- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah, Iran
3- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
4- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
5- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran , nomanpoursh@gmail.com
6- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
Abstract:   (1491 Views)

Background and Aim: Antibiotic resistance is recognized as a major threat to global health that can result in increased morbidity and mortality. On February 27, 2017, the first list of antibiotic-resistant priority pathogens was published by the World Health Organization (WHO). These pathogens, including Pseudomonas aeruginosa, pose the greatest threat to human health. This research was conducted in order to introduce viable candidate vaccine proteins against P. aeruginosa outer membrane proteins (OMPs) using reverse vaccinology approaches.
Materials and Methods: Fifty-eight clinical isolates and 9982 outer membrane protein sequences were retrieved for vaxign2 calculation of sequence-derived features. First, 30 proteins with the highest adhesion probability were selected, and in the next step, 10 candidates common among the 58 strains with the highest scores were introduced as candidates for further studies. After determining the physicochemical characteristics of these vaccine candidates, the presence of protected domains was predicted in 2 out of 10 proteins.
Results: Based on the results obtained from the bioinformatics analysis of the antigenic properties of these proteins, we identified 10 outer membrane proteins that have the highest antigenic scores, are common among all 58 clinical isolates, have no human protein homologs, and have less than 1 transmembrane helix. These candidate proteins have optimal physicochemical properties. The presence of conserved domains was predicted only in the outer membrane porin F and enterobactin iron receptor.
Conclusion: We suggested 10 candidate proteins that showed suitable characteristics including outer membrane protein F (OprF) and ferric enterobactin receptor.

Full-Text [PDF 682 kb]   (347 Downloads) |   |   Full-Text (HTML)  (222 Views)  
Type of Study: Original Research Article | Subject: Microbial Bioinformatics
Received: 2023/06/28 | Accepted: 2023/09/19 | ePublished: 2023/11/29

References
1. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10(4):369-78. [DOI:10.1016/j.jiph.2016.08.007] [PMID]
2. White A, Hughes JM. Critical importance of a one health approach to antimicrobial resistance. EcoHealth. 2019;16:404-9. [DOI:10.1007/s10393-019-01415-5] [PMID]
3. Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines against antimicrobial resistance. Front Immunol. 2020;11:1048. [DOI:10.3389/fimmu.2020.01048] [PMID] [PMCID]
4. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56-66. [DOI:10.1016/S1473-3099(18)30605-4] [PMID]
5. Arrieta-Ortiz ML, Pan M, Kaur A, Pepper-Tunick E, Srinivas V, Dash A, et al. Disrupting the ArcA Regulatory Network Amplifies the Fitness Cost of Tetracycline Resistance in Escherichia coli. Msystems. 2023;8(1):e00904-22. [DOI:10.1128/msystems.00904-22] [PMID] [PMCID]
6. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277.
7. Mladenovic‐Antic S, Kocic B, Velickovic‐Radovanovic R, Dinic M, Petrovic J, Randjelovic G, et al. Correlation between antimicrobial consumption and antimicrobial resistance of Pseudomonas aeruginosa in a hospital setting: a 10‐year study. J Clin Pharm Ther. 2016;41(5):532-7. [DOI:10.1111/jcpt.12432] [PMID]
8. Kennedy DA, Read AF. Why does drug resistance readily evolve but vaccine resistance does not?. Proc Royal Soc B: Biol Sci. 2017;284(1851):20162562. [DOI:10.1098/rspb.2016.2562] [PMID] [PMCID]
9. Tagliabue A, Rappuoli R. Changing priorities in vaccinology: antibiotic resistance moving to the top. Front Immunol. 2018;9:1068. [DOI:10.3389/fimmu.2018.01068] [PMID] [PMCID]
10. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens. 2021;10(10):1310. [DOI:10.3390/pathogens10101310] [PMID] [PMCID]
11. Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells. 2023;12(1):199. [DOI:10.3390/cells12010199] [PMID] [PMCID]
12. Killough M, Rodgers AM, Ingram RJ. Pseudomonas aeruginosa: Recent advances in vaccine development. Vaccines. 2022;10(7):1100. [DOI:10.3390/vaccines10071100] [PMID] [PMCID]
13. Rello J, Krenn C-G, Locker G, Pilger E, Madl C, Balica L, et al. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Critical Care. 2017;21:1-13. [DOI:10.1186/s13054-017-1601-9] [PMID] [PMCID]
14. Hoggarth A, Weaver A, Pu Q, Huang T, Schettler J, Chen F, et al. Mechanistic research holds promise for bacterial vaccines and phage therapies for Pseudomonas aeruginosa. Drug Des Devel Ther. 2019:909-24. [DOI:10.2147/DDDT.S189847] [PMID] [PMCID]
15. Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S, Santini L, et al. A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci. 2006;103(29):10834-9. [DOI:10.1073/pnas.0603940103] [PMID] [PMCID]
16. Ni Z, Chen Y, Ong E, He Y. Antibiotic resistance determinant-focused Acinetobacter baumannii vaccine designed using reverse vaccinology. Int J Mol Sci. 2017;18(2):458. [DOI:10.3390/ijms18020458] [PMID] [PMCID]
17. Del Tordello E, Rappuoli R, Delany I. Reverse vaccinology: exploiting genomes for vaccine design. Human vaccines: Elsevier; 2017. p. 65-86. [DOI:10.1016/B978-0-12-802302-0.00002-9]
18. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol. 2020;11:1581. [DOI:10.3389/fimmu.2020.01581] [PMID] [PMCID]
19. Ong E, Cooke MF, Huffman A, Xiang Z, Wong MU, Wang H, et al. Vaxign2: The second generation of the first Web-based vaccine design program using reverse vaccinology and machine learning. Nucleic Acids Res. 2021;49(W1):W671-W8. [DOI:10.1093/nar/gkab279] [PMID] [PMCID]
20. Ghaderzadeh M, Asadi F, Hosseini A, Bashash D, Abolghasemi H, Roshanpour A. Machine learning in detection and classification of leukemia using smear blood images: a systematic review. Sci Program. 2021;2021:1-14. [DOI:10.1155/2021/9933481]
21. Irum S, Andleeb S, Ali A, Rashid MI, Majid M. Quest for novel preventive and therapeutic options against multidrug-resistant Pseudomonas aeruginosa. Int J Pept Res Ther. 2021;27(4):2313-31. [DOI:10.1007/s10989-021-10255-3] [PMID] [PMCID]
22. Hernando-Amado S, Martínez JL. "Antimicrobial Resistance in Pseudomonas aeruginosa". MDPI; 2023. p. 744. [DOI:10.3390/microorganisms11030744] [PMID] [PMCID]
23. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
24. Meskini M, Goodarzi NN, Fereshteh S, Bolourchi N, Mirzaie A, Badmasti F. A bioinformatics approach to introduce novel multi-epitope vaccines against Acinetobacter baumannii retrieved from immunogenic extracellular loops of outer membrane proteins. Inform Med Unlocked. 2022;31:100989. [DOI:10.1016/j.imu.2022.100989]
25. Hancock R, Poole K, Benz R. Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol. 1982;150(2):730-8. [DOI:10.1128/jb.150.2.730-738.1982] [PMID] [PMCID]
26. Cornelis P, Bodilis J. A survey of TonB‐dependent receptors in fluorescent pseudomonads. Environ Microbiol Rep. 2009;1(4):256-62. [DOI:10.1111/j.1758-2229.2009.00041.x] [PMID]
27. Hatano K, Boisot S, DesJardins D, Wright D, Brisker J, Pier GB. Immunogenic and antigenic properties of a heptavalent high-molecular-weight O-polysaccharide vaccine derived from Pseudomonas aeruginosa. Infect Immun. 1994;62(9):3608-16. [DOI:10.1128/iai.62.9.3608-3616.1994] [PMID] [PMCID]
28. Stanislavsky ES, Lam JS. Pseudomonas aeruginosa antigens as potential vaccines. FEMS Microbiol Rev. 1997;21(3):243-77. [DOI:10.1111/j.1574-6976.1997.tb00353.x] [PMID]
29. Ghysels B, Dieu BTM, Beatson SA, Pirnay J-P, Ochsner UA, Vasil ML, et al. FpvB, an alternative type I ferripyoverdine receptor of Pseudomonas aeruginosa. Microbiology. 2004;150(6):1671-80. [DOI:10.1099/mic.0.27035-0] [PMID]
30. De Mot R, Proost P, Van Damme J, Vanderleyden J. Homology of the root adhesin of Pseudomonas fluorescens OE 28.3 with porin F of P. neruginosa and P. syringae. Molec Gen Genet. 1992;231:489-93. [DOI:10.1007/BF00292721] [PMID]
31. Hardham JM, Stamm LV. Identification and characterization of the Treponema pallidum tpn50 gene, an ompA homolog. Infect Immun. 1994;62(3):1015-25. [DOI:10.1128/iai.62.3.1015-1025.1994] [PMID] [PMCID]
32. Nguyen Y, Sugiman-Marangos S, Harvey H, Bell SD, Charlton CL, Junop MS, et al. Pseudomonas aeruginosa minor pilins prime type IVa pilus assembly and promote surface display of the PilY1 adhesin. J Biol Chem. 2015;290(1):601-11. [DOI:10.1074/jbc.M114.616904] [PMID] [PMCID]
33. Piselli C, Golla VK, Benz R, Kleinekathöfer U. Importance of the lysine cluster in the translocation of anions through the pyrophosphate specific channel OprO. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2023;1865(2):184086. [DOI:10.1016/j.bbamem.2022.184086] [PMID]
34. Ochsner UA, Vasil ML. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. Proc Natl Acad Sci. 1996;93(9):4409-14. [DOI:10.1073/pnas.93.9.4409] [PMID] [PMCID]
35. Lee K, Lee K-M, Go J, Ryu J-C, Ryu J-H, Yoon SS. The ferrichrome receptor A as a new target for Pseudomonas aeruginosa virulence attenuation. FEMS Microbiol Lett. 2016;363(11):fnw104. [DOI:10.1093/femsle/fnw104] [PMID]
36. Tamber S, Hancock RE. Involvement of two related porins, OprD and OpdP, in the uptake of arginine by Pseudomonas aeruginosa. FEMS Microbiol Lett. 2006;260(1):23-9. [DOI:10.1111/j.1574-6968.2006.00293.x] [PMID]
37. Yamano Y, Nishikawa T, Komatsu Y. Cloning and nucleotide sequence of anaerobically induced porin protein E1 (OprE) of Pseudomonas aeruginosa PAO1. Mol Microbiol. 1993;8(5):993-1004. [DOI:10.1111/j.1365-2958.1993.tb01643.x] [PMID]
38. Yamano Y, Nishikawa T, Komatsu Y. Involvement of the RpoN protein in the transcription of the oprE gene in Pseudomonas aeruginosa. FEMS Microbiol Lett. 1998;162(1):31-7. [DOI:10.1111/j.1574-6968.1998.tb12975.x] [PMID]
39. Xiang Z, He Y. Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinform. 2013;14(4):1-10. [DOI:10.1186/1471-2105-14-S4-S2] [PMID] [PMCID]
40. Papaneri AB, Johnson RF, Wada J, Bollinger L, Jahrling PB, Kuhn JH. Middle East respiratory syndrome: obstacles and prospects for vaccine development. Expert Rev Vaccines. 2015;14(7):949-62. [DOI:10.1586/14760584.2015.1036033] [PMID] [PMCID]
41. Möller J, Bodenschatz M, Sangal V, Hofmann J, Burkovski A. Multi-Omics of Corynebacterium Pseudotuberculosis 12CS0282 and an In Silico Reverse Vaccinology Approach Reveal Novel Vaccine and Drug Targets. Proteomes. 2022;10(4):39. [DOI:10.3390/proteomes10040039] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc