year 17, Issue 4 (July - August 2023)                   Iran J Med Microbiol 2023, 17(4): 464-473 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behoftadeh F, Mojtahedi A, Faezi Ghasemi M, Issazadeh K, Golshekan M. Investigation of Immunosensor Modification With Reduced Graphene Oxide with Au Nanoparticles on Glassy Carbon Electrode in Label-free for Escherichia coli Detection. Iran J Med Microbiol 2023; 17 (4) :464-473
1- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran
2- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,
3- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
Abstract:   (449 Views)

Background and Aim: Escherichia coli  (E.coli) is an essential bacterial indicator in the control of pharmaceutical quality and other similar fields. There are some biosensors designed for its detection based on electrochemical transduction methods. A biosensor with reduced graphene oxide was modified. Traditional methods are time-consuming and high prices, so in this study a new biosensor with modification of reduced graphene oxide (rGO) as a kind of carbon composition on glassy carbon electrode (GCE) with Au Nanoparticles (Au NPs) decoration was used for E. coli detection.
Materials and Methods: Reduced graphene oxide (rGO)  modified on glassy carbon electrode (GCE) and chronoamperometric and reduction methods were used for Au NPs decoration and it was completed with polyclonal E. coli antibody and 0.5 W/V% Bovine Serum Albumin (BSA) solution. Morphology and structure of rGO and Au NPs in GCE/rGO/Au NPs/ E. coli polyclonal antibody/ BSA biosensor were verified by SEM (Scanning Electron Microscope) during modification steps. E. coli detection in dissimilar samples was performed by Square-Wave Voltammetry (SWV) and Cyclic Voltammetry (CV) techniques which were set in 0.1M phosphate buffer solution (PBS) (pH 7.4) mixed with 0.5mM acetaminophen. In comparison with the biosensor, the classical method of detection was performed with serial dilutions of E. coli ATCC 8739 (1×101–1×108 CFU/ml) which was cultured on media. 
Results: Despite the two methods used to stabilize Au NPs, scanning electron microscope (SEM) images showed that the current difference did not increase due to gold particles. Its modification had not significant change in current and it was not a successful experiment for E.coli detection.
Conclusion: Compared with the plate method, biosensor couldn’t substitute with conventional methods for E. coli detection.

Full-Text [PDF 1035 kb]   (109 Downloads) |   |   Full-Text (HTML)  (41 Views)  
Type of Study: Original Research Article | Subject: Nanotechnology In Medicine
Received: 2023/04/24 | Accepted: 2023/07/23 | ePublished: 2023/09/27

1. Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clini Microbiol Rev. 2014;27(3):631-46. [DOI:10.1128/CMR.00120-13] [PMID] [PMCID]
2. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv. 2008;26(2):135-50. [DOI:10.1016/j.biotechadv.2007.10.003] [PMID]
3. Nurliyana M, Sahdan M, Wibowo K, Muslihati A, Saim H, Ahmad S, et al., editors. The detection method of Escherichia coli in water resources: A review. Journal of Physics: Conference Series; 2018: IOP Publishing. [DOI:10.1088/1742-6596/995/1/012065]
4. Pebdeni AB, Roshani A, Mirsadoughi E, Behzadifar S, Hosseini M. Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control. 2022:108822. [DOI:10.1016/j.foodcont.2022.108822]
5. Convention USP. USP 44 NF 39: United States Pharmacopeia [and] National Formulary. Reissue. Supplement 2. a: United States Pharmacopeial Convention; 2021.
6. Rawlins PsM. British Pharmacopoeia London E14 4PU: Medical and Healthcare Products Regulatory Agency; 2020.
7. Thakur B, Zhou G, Chang J, Pu H, Jin B, Sui X, et al. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosens Bioelectron. 2018;110:16-22. [DOI:10.1016/j.bios.2018.03.014] [PMID]
8. Waswa J, Irudayaraj J, DebRoy C. Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Sci Tech. 2007;40(2):187-92. [DOI:10.1016/j.lwt.2005.11.001]
9. Hashemi E, Forouzandeh M. Designing a new biosensor "DNA ELISA" to detect Escherichia coli using genomic DNA and comparison of this method to PCR-ELISA. J Enzyme Inhib Med Chem. 2018;33(1):722-5. [DOI:10.1080/14756366.2018.1450748] [PMID] [PMCID]
10. Henriques J, Sousa J, Veiga F, Cardoso C, Vitorino C. Process analytical technologies and injectable drug products: Is there a future?. Int J Pharm. 2019;554:21-35. [DOI:10.1016/j.ijpharm.2018.10.070] [PMID]
11. García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates MV, et al. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron. 2010;26(4): 1437-41. [DOI:10.1016/j.bios.2010.07.077] [PMID]
12. Geleta GS, Zhao Z, Wang Z. Electrochemical biosensors for detecting microbial toxins by graphene-based nanocomposites. J Anal Test. 2018;2(1):20-5. [DOI:10.1007/s41664-018-0051-y]
13. Assari P, Rafati AA, Feizollahi A, Asadpour Joghani R. An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchimica Acta. 2019;186(7):1-9. [DOI:10.1007/s00604-019-3565-8] [PMID]
14. Salmani H, Azarnezhad A, Fayazi MR, Hosseini A. Pathotypic and phylogenetic study of diarrheagenic Escherichia coli and uropathogenic E. coli using multiplex polymerase chain reaction. Jundishapur J Microbiol. 2016;9(2):e28331. [DOI:10.5812/jjm.28331] [PMID] [PMCID]
15. Sandle T. Towards a rapid sterility test. J Microb Biochem Technol. 2015;7(4):216-7
16. Yang H, Qin J, Zhang M, Shen H, Feng J, Hao H. Label-free Lectin Impedimetric Biosensor Based on a Polyaniline/Graphene Nanocomposite for the Detection of Escherichia coli. Int J Electrochem Sci. 2020;15:8913-27. [DOI:10.20964/2020.09.34]
17. Sandle T. Approaching the Selection of Rapid Microbiological Methods. J Valid Technol. 2014;20(2):1-10.
18. Meraat R, Issazadeh K, Abdolahzadeh Ziabari A, Faezi Ghasemi M. Rapid Detection of Escherichia coli by β-Galactosidase Biosensor Based on ZnO NPs and MWCNTs: A Comparative Study. Curr Microbiol. 2020;77(10):2633-41. [DOI:10.1007/s00284-020-02040-0] [PMID]
19. Li C, Sun F. Graphene-assisted sensor for rapid detection of antibiotic resistance in Escherichia coli. Front Chem. 2021;9:696906. [DOI:10.3389/fchem.2021.696906] [PMID] [PMCID]
20. Pourmadadi M, Shayeh JS, Omidi M, Yazdian F, Alebouyeh M, Tayebi L. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim Acta. 2019;186(12):1-8. [DOI:10.1007/s00604-019-3957-9] [PMID]
21. Barthasarathy PR, Ahmed NA, Salim WWAW. Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157: H7 Detection. Proceedings. 2020;60(1):13. [DOI:10.3390/IECB2020-07056]
22. Yang T, Yang X, Guo X, Fu S, Zheng J, Chen S, et al. A novel fluorometric aptasensor based on carbon nanocomposite for sensitive detection of Escherichia coli O157: H7 in milk. J Dairy Sci. 2020;103(9):7879-89. [DOI:10.3168/jds.2020-18344] [PMID]
23. Nakama K, Sedki M, Mulchandani A. Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms. Anal Chim Acta. 2021;1150:338232. [DOI:10.1016/j.aca.2021.338232] [PMID]
24. Qaanei M, Taheri RA, Eskandari K. Electrochemical aptasensor for Escherichia coli O157: H7 bacteria detection using a nanocomposite of reduced graphene oxide, gold nanoparticles and polyvinyl alcohol. Analytical Methods. 2021;13(27):3101-9. [DOI:10.1039/D1AY00563D] [PMID]
25. Silva M, Cesarino I. Evaluation of a nanocomposite based on reduced graphene oxide and gold nanoparticles as an electrochemical platform for detection of sulfamethazine. J Compos Sci. 2019;3(2):59. [DOI:10.3390/jcs3020059]
26. Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007;598(2):181-92. [DOI:10.1016/j.aca.2007.07.054] [PMID]
27. Hassan H, Sharma P, Hasan MR, Singh S, Thakur D, Narang J. Gold nanomaterials-The golden approach from synthesis to applications. Mater Sci Energy Technol. 2022;(5):375-90. [DOI:10.1016/j.mset.2022.09.004]
28. Güner A, Çevik E, Şenel M, Alpsoy L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem. 2017;229:358-65. [DOI:10.1016/j.foodchem.2017.02.083] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc