year 17, Issue 5 (September - October 2023)                   Iran J Med Microbiol 2023, 17(5): 559-570 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zaid Tariq Ahmed R, Mujahid Abdullah R. Prevalence of Multidrug Resistant Staphylococcus aureus and their Pathogenic Toxins Genes in Iraqi Patients, 2022-2023. Iran J Med Microbiol 2023; 17 (5) :559-570
URL: http://ijmm.ir/article-1-2090-en.html
1- Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq
2- Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq , dr.ranamujahid@gmail.com
Abstract:   (417 Views)

Background and Aim: Methicillin Resistance Staphylococcus aureus (MRSA) causes staph infections, produces numerous toxins and virulence factors, and displays antibiotic resistance. Therefore, this study aimed to detect MRSA and its antibiotic-resistant patterns and evaluate the toxins genes in S. aureus isolates from Baghdad, Iraq.
Materials and Methods: Two hundred twenty bacterial samples were collected from different clinical sources in Iraq, 2022-2023. The diagnosis was made using traditional culture, microscopic examinations, and molecular diagnosis using the 16srRNA gene and mecA gene used for Methicillin Resistance detection. In addition, Antibiotic resistance patterns were detected using VITEK-2. Also, the toxins genes were determined by sequencing.
Results: Fifty isolates were identified as S. aureus, and the strains showed high resistance to Benzylpenicillin, Erythromycin, Oxacillin, and Clindamycin. PCR showed a prevalence of the mecA gene in methicillin resistance S. aureus isolates by 100%, while toxin genes that were present in S. aureus were LukD/E gene 50(100%), eta gene 50(100%), etd gene 47(94%), LukS/F gene 34(68%) and tst gene 21(42%). All isolates tested negative for the etb gene. The results of the sequencing analysis of the studied genes showed that there were no genetic mutations. They were 100% identical except for the eta gene, and the results indicated three genetic mutations.
Conclusion: All S. aureus isolates had the mecA gene for methicillin resistance, and S. aureus possessed toxin genes. The sequencing analysis of the eta gene indicated the presence of various mutations, including the silent mutations.

Full-Text [PDF 822 kb]   (100 Downloads) |   |   Full-Text (HTML)  (11 Views)  
Type of Study: Original Research Article | Subject: Microbial Genetics
Received: 2023/08/4 | Accepted: 2023/11/17 | ePublished: 2023/11/29

References
1. Gnanamani A, Hariharan P, Paul-Satyaseela M. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. Frontiers in Staphylococcus aureus. 2017;4(28):10-5772. [DOI:10.5772/67338] [PMCID]
2. Kim M-K. Staphylococcus aureus Toxins: From Their Pathogenic Roles to Anti-virulence Therapy Using Natural Products. Biotechnol Bioprocess Eng. 2019;24(3):424-35. [DOI:10.1007/s12257-019-0059-9]
3. Suarez JF, Ong'uti S, Holubar M. Select controversies in the management of methicillin-resistant Staphylococcus aureus bacteremia: answers and remaining questions from recent evidence. Fac Rev. 2021;10(66). [DOI:10.12703/r/10-66] [PMID] [PMCID]
4. Pomorska K, Jakubu V, Malisova L, Fridrichova M, Musilek M, Zemlickova H. Antibiotic resistance, spa typing and clonal analysis of methicillin-resistant Staphylococcus aureus (MRSA) isolates from blood of patients hospitalized in the Czech Republic. Antibiotics. 2021;10(4):395. [DOI:10.3390/antibiotics10040395] [PMID] [PMCID]
5. Bennett MR, Thomsen IP. Epidemiological and clinical evidence for the role of toxins in S. aureus human disease. Toxins. 2020;12(6):408. [DOI:10.3390/toxins12060408] [PMID] [PMCID]
6. Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of Staphylococcus aureus-An update on their biology, role in pathogenesis and as targets for anti-virulence therapy. Adv Infect Dis. 2019;9(2):80-104. [DOI:10.4236/aid.2019.92007]
7. Rasheed NA, Hussein NR. Staphylococcus aureus: an overview of discovery, characteristics, epidemiology, virulence factors and antimicrobial sensitivity. Eur J Mol Clin Med. 2021;8(3):1160-83.
8. Mahdi AA, Abdullah RM. Molecular study of Carbapenime resistant genes in Acinetobacter baumannii that isolated from different clinical cases. Biochem Cell Arch. 2020;20(1):1605-10.
9. McClure J-A, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, et al. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from-resistant staphylococci. J Clin Microbiol. 2006;44(3):1141-4. [DOI:10.1128/JCM.44.3.1141-1144.2006] [PMID] [PMCID]
10. Pavithra KG, P SK, V J, P SR. Removal of colorants from wastewater: A review on sources and treatment strategies. J Ind Eng Chem. 2019;75:1-19. [DOI:10.1016/j.jiec.2019.02.011]
11. Mehrotra M, Wang G, Johnson Wendy M. Multiplex PCR for Detection of Genes forStaphylococcus aureus Enterotoxins, Exfoliative Toxins, Toxic Shock Syndrome Toxin 1, and Methicillin Resistance. J Clin Microbiol. 2000;38(3):1032-5. [DOI:10.1128/JCM.38.3.1032-1035.2000] [PMID] [PMCID]
12. Mohseni M, Rafiei F, Ghaemi EA. High frequency of exfoliative toxin genes among Staphylococcus aureus isolated from clinical specimens in the north of Iran: Alarm for the health of individuals under risk. Iran J Microbiol. 2018;10(3):158-65.
13. Hussain EA, Qasim Hameed H, Mujahid Al-Shuwaikh A, Mujahid Abdullah R. Detection of the aadA1 and aac (3)-1V resistance genes in Acinetobacter baumannii. Arch Razi Inst. 2022;77(3):959-66.
14. Cheung GYC, Bae JS, Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12(1):547-69. [DOI:10.1080/21505594.2021.1878688] [PMID] [PMCID]
15. Goudarzi M, Bahramian M, Satarzadeh Tabrizi M, Udo EE, Figueiredo AMS, Fazeli M, et al. Genetic diversity of methicillin resistant Staphylococcus aureus strains isolated from burn patients in Iran: ST239-SCCmec III/t037 emerges as the major clone. Microb Pathog. 2017;105:1-7. [DOI:10.1016/j.micpath.2017.02.004] [PMID]
16. Mahdi EA, Al-Shaibani AB, Zbar NS. The impact of Glucose and Sodium Chloride on the Biofilm Formation of Pseudomonas aeruginosa & Staphylococcus aureus. Ibn al-Haitham j Pure Appl Sci. 2020;33(4):1-9. [DOI:10.30526/33.4.2525]
17. Lamichhane A, Nakarmi KK, Dahal P, Basnet SJ, Pokharel PB, Bhattarai S, et al. Bacteriological profile of burn patients and antimicrobial susceptibility pattern of their wound isolates at nepal cleft and burn center. J Coll Med Sci Nepal. 2019;15(3):160-6. [DOI:10.3126/jcmsn.v15i3.24363]
18. Khan AA, Ali A, Tharmalingam N, Mylonakis E, Zahra R. First report of mecC gene in clinical methicillin resistant S. aureus (MRSA) from tertiary care hospital Islamabad, Pakistan. J Infect Public Health. 2020;13(10):1501-7. [DOI:10.1016/j.jiph.2020.05.017] [PMID]
19. Mitiku A, Aklilu A, Biresaw G, Gize A. Prevalence and Associated Factors of Methicillin Resistance Staphylococcus aureus (MRSA) Among Urinary Tract Infection Suspected Patients Attending at Arba Minch General Hospital, Southern Ethiopia. Infect Drug Resist. 2021;14(null):2133-42. [DOI:10.2147/IDR.S306648] [PMID] [PMCID]
20. Rasmi AH, Ahmed EF, Darwish AMA, Gad GFM. Virulence genes distributed among Staphylococcus aureus causing wound infections and their correlation to antibiotic resistance. BMC Infect Dis. 2022;22(652). [DOI:10.1186/s12879-022-07624-8] [PMID] [PMCID]
21. Ogaidi BM, Al-Jobori KM, Ghareeb AM. Green Synthesis Of Silver Nanoparticles By Ricinus Communis And Investigate Its Antibacterial Potential Against Methicillin-Resistant Staphylococcus Aureus (Mrsa). Biochem Cell Arch. 2021;21(2):3731-40.
22. Ahmed ZF, Al-Daraghi WAH. Molecular Detection of medA Virulence Gene in Staphylococcus aureus Isolated from Iraqi Patients. Iraqi J Vet Sci. 2022;21(1):8-18.
23. Mohammadi A, Goudarzi M, Dadashi M, Soltani M, Goudarzi H, Hajikhani B. Molecular Detection of Genes Involved in Biofilm Formation in Staphylococcus aureus Strains Isolates: Evidence From Shahid Motahari Hospital in Tehran. Jundishapur J Microbiol. 2020;13(7):e102058. [DOI:10.5812/jjm.102058]
24. Mohammed AS, Al-Kazaz AKA, Zaidan IA. Effect the combination of antibiotics on clinical isolates of Staphylococcus aureus. Baghdad Sci J. 2009;6(4):683-92. [DOI:10.21123/bsj.6.4.683-692]
25. Mama M, Abdissa A, Sewunet T. Antimicrobial susceptibility pattern of bacterial isolates from wound infection and their sensitivity to alternative topical agents at Jimma University Specialized Hospital, South-West Ethiopia. Ann Clin Microbiol. 2014;13(14). [DOI:10.1186/1476-0711-13-14] [PMID] [PMCID]
26. Alkaabi SAG. Bacterial isolates and their antibiograms of burn wound infections in Burns Specialist Hospital in Baghdad. Baghdad Sci J. 2013;10(2):331-40. [DOI:10.21123/bsj.10.2.331-340]
27. Motamedi H, Asghari B, Tahmasebi H, Arabestani MR. Adhesion factors and association with antibiotic resistance among clinical isolates of Staphylococcus aureus. Iran J Microbiol. 2017;11(3):27-36.
28. Dinescu Ş C, Bărbulescu AL, Firulescu SC, Chisălău AB, Pârvănescu CD, Ciurea PL, et al. Staphylococcus aureus-induced septic arthritis of the ankle related to malum perforans in a diabetes patient. Rom J Morphol Embryol. 2021;62(2):615-9. [DOI:10.47162/RJME.62.2.31] [PMID] [PMCID]
29. Nomura R, Nakaminami H, Takasao K, Muramatsu S, Kato Y, Wajima T, et al. A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J Glob Antimicrob Resist. 2020;22:244-7. [DOI:10.1016/j.jgar.2020.03.002] [PMID]
30. Akrae DK, Al-Ahmer SD, Ghareeb AM. Association of Biofilm Production Involved Icaa Gene and Antibiotic Resistance Profile With Ocular Infections Incidence Caused by Staphylococcus Aurous. Biochem Cell Arch. 2021;21(1):631-7.
31. Gurung RR, Maharjan P, Chhetri GG. Antibiotic resistance pattern of Staphylococcus aureus with reference to MRSA isolates from pediatric patients. Future Sci OA. 2020;6(4):FSO464. [DOI:10.2144/fsoa-2019-0122] [PMID] [PMCID]
32. Mahdi Al-Buhilal JA, Saad M, Al-Rubaey NKF. Molecular Detection Of Erma, Ermb And Ermc Genes Among Methicillin Resistant Staphylococcus Aureus Isolated From Patients With Ocular Infections. Biochem Cell Arch. 2021;21(1):1443-8.
33. Prabhoo R, Chaddha R, Iyer R, Mehra A, Ahdal J, Jain R. Overview of methicillin resistant Staphylococcus aureus mediated bone and joint infections in India. Orthop Rev. 2019;11(2):8070. [DOI:10.4081/or.2019.8070] [PMID] [PMCID]
34. Zhou W, Shan W, Ma X, Chang W, Zhou X, Lu H, et al. Molecular characterization of rifampicin-resistant Staphylococcus aureus isolates in a Chinese teaching hospital from Anhui, China. BMC Microbiol. 2012;12(1):240. [DOI:10.1186/1471-2180-12-240] [PMID] [PMCID]
35. Omar NN, Mohammed RK. A Molecular Study of Toxic Shock Syndrome Toxin gene (tsst-1) in β-lactam Resistant Staphylococcus aureus Clinical Isolates. Iraqi J Sci. 2021;6(3):825-37. [DOI:10.24996/ijs.2021.62.3.13]
36. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, et al. Structure of functionally activated small ribosomal subunit at 3.3 Å resolution. Cell. 2000;102(5):615-23. [DOI:10.1016/S0092-8674(00)00084-2] [PMID]
37. Ahmed ZA, Yousif AA. Molecular and phylogenetic analysis of methicillin resistant Staphylococcus aureus isolated from subclinical mastitis in lactating ewes. Iraqi J Vet Sci. 2021;35:121-6. [DOI:10.33899/ijvs.2021.131854.2013]
38. Rezashateri M, Ahrabi M, Salehi M. Molecular Analysis of the Presence of pvl, spa, and mecA Genes and Their Correlation with a Range of Antibiotics in Staphylococcus aureus Collected from Burn Patients. Iran J Med Microbiol. 2021;15(6):625-37. [DOI:10.30699/ijmm.15.6.625]
39. Guo Y, Song G, Sun M, Wang J, Wang Y. Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10(107). [DOI:10.3389/fcimb.2020.00107] [PMID] [PMCID]
40. Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4):e00020. [DOI:10.1128/CMR.00020-18] [PMID] [PMCID]
41. Ibraheem HT, Al-Mathkhury HJF. pvl-carried methicillin resistant Staphylococcus aureus isolated from hospitalized patients in Baghdad, Iraq. Iraqi J Sci. 2018;59(4):1967-72. [DOI:10.24996/ijs.2018.59.4B.1]
42. Lin T, Li Q, Jin D, Liu W, Tang C, Zhang X. Investigation of Virulence Genes of Staphylococcus aureus Isolated from Sterile Body Fluid Samples and Their Correlation with Clinical Symptoms and Outcomes. Can J Infect Dis Med Microbiol. 2021;2021:5354747. [DOI:10.1155/2021/5354747] [PMID] [PMCID]
43. Novick RP, Subedi A. The SaPIs: Mobile Pathogenicity Islands of Staphylococcus. 2007. In: Superantigens and Superallergens [Internet]. S.Karger AG. [DOI:10.1159/000100857] [PMID]
44. Al-Zamily KY, Al-Rubaey NKF, Al-Buhilal JAM. Molecular Detection of Some Virulence Genes in Stahpylococcus aureus Isolated from Different Human Clinical Specimens. Med Leg J. 2020;20(2):741-6.
45. Nguyen HTT, Nguyen TH, Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput Struct Biotechnol J. 2020;18:3324-34. [DOI:10.1016/j.csbj.2020.10.027] [PMID] [PMCID]
46. Mahmoudi H, Pourhajibagher M, Chiniforush N, Soltanian AR, Alikhani MY, Bahador A. Biofilm formation and antibiotic resistance in meticillin-resistant and meticillin-sensitive Staphylococcus aureus isolated from burns. J Wound Care. 2019;28(2):66-73. [DOI:10.12968/jowc.2019.28.2.66] [PMID]
47. Habibi Najafi MB, Pezeshki P, editors. Bacterial Mutation; Types, Mechanisms And Mutant Detection Methods: A Review. 2013.
48. Yassin HY, Melconian AK, Mahmood SS. Prevalence of Exfoliative Toxin Genes among Clinical Isolates of Staphylococcus Aureus in Iraq. Iraqi J Agric Sci. 2022;53(2):465-70. [DOI:10.36103/ijas.v53i2.1554]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc