1. Springmann M, Mason-D'Croz D, Robinson S, Garnett T, Godfray HCJ, Gollin D, et al. Global and regional health effects of future food production under climate change: a modelling study. Lancet. 2016;387(10031):1937-46. [
DOI:10.1016/S0140-6736(15)01156-3] [
PMID]
2. McMichael T, Blashki G, Karoly DJ. Climate change and primary health care. Aust Fam Physician. 2007;36(12):986-9.
3. Smith KR, Chafe Z, Woodward A, Campbell-Lendrum D, Chadee DD, Honda Y, et al. Human health: impacts, adaptation, and co-benefits. Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Cambridge University Press; 2015. p. 709-54.
4. Polgreen PM, Polgreen EL. Infectious Diseases, Weather and Climate. Clin Infect Dis. 2018;66(6):815-7. [
DOI:10.1093/cid/cix1105] [
PMID]
5. Hartley DM, Barker CM, Le Menach A, Niu T, Gaff HD, Reisen WK. Effects of temperature on emergence and seasonality of West Nile virus in California. Am J Trop Med Hyg. 2012;86(5):884-94. [
DOI:10.4269/ajtmh.2012.11-0342] [
PMID] [
PMCID]
6. Mirsaeidi M, Motahari H, Taghizadeh Khamesi M, Sharifi A, Campos M, Schraufnagel DE. Climate Change and Respiratory Infections. Ann Am Thorac Soc. 2016;13(8):1223-30. [
DOI:10.1513/AnnalsATS.201511-729PS] [
PMID]
7. Zhang Y, Bi P, Hiller JE, Sun Y, Ryan P. Climate variations and bacillary dysentery in northern and southern cities of China. J Infect. 2007;55(2):194-200. [
DOI:10.1016/j.jinf.2006.12.002] [
PMID]
8. Schaefer D, Domroes M. Recent climate change in Japan - spatial and temporal characteristics of trends of temperature. Clim Past. 2009;5(1):13-9. [
DOI:10.5194/cp-5-13-2009]
9. Schwab F, Gastmeier P, Meyer E. The Warmer the Weather, the More Gram-Negative Bacteria - Impact of Temperature on Clinical Isolates in Intensive Care Units. PloS One. 2014;9(3):e91105. [
DOI:10.1371/journal.pone.0091105] [
PMID] [
PMCID]
10. Perencevich EN, McGregor JC, Shardell M, Furuno JP, Harris AD, Morris JG, et al. Summer Peaks in the Incidences of Gram-Negative Bacterial Infection Among Hospitalized Patients. Infect Control Hosp Epidemiol. 2008;29(12):1124-31. [
DOI:10.1086/592698] [
PMID]
11. Eber MR, Shardell M, Schweizer ML, Laxminarayan R, Perencevich EN. Seasonal and Temperature-Associated Increases in Gram-Negative Bacterial Bloodstream Infections among Hospitalized Patients. PloS One. 2011;6(9):e25298. [
DOI:10.1371/journal.pone.0025298] [
PMID] [
PMCID]
12. Desmond LA, Lloyd MA, Ryan SA, Janus ED, Karunajeewa HA. Respiratory viruses in adults hospitalised with Community-Acquired Pneumonia during the non-winter months in Melbourne: Routine diagnostic practice may miss large numbers of influenza and respiratory syncytial virus infections. Commun Dis Intell. 2019;43(1-3). [
DOI:10.33321/cdi.2019.43.12] [
PMID]
13. Johnson NB, Hayes LD, Brown K, Hoo EC, Ethier KA. CDC National Health Report: leading causes of morbidity and mortality and associated behavioral risk and protective factors-United States, 2005-2013. MMWR Surveill Summ. 2014;63:3-27.
14. Chowdhury FR, Ibrahim QSU, Bari MS, Alam MJ, Dunachie SJ, Rodriguez-Morales AJ, et al. The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLoS One. 2018;13(6):e0199579. [
DOI:10.1371/journal.pone.0199579] [
PMID] [
PMCID]
15. Xu Z, Hu W, Tong S. Temperature variability and childhood pneumonia: an ecological study. Environ Health. 2014;13(1):1-8. [
DOI:10.1186/1476-069X-13-51] [
PMID] [
PMCID]
16. Weinberger DM, Harboe ZB, Viboud C, Krause TG, Miller M, Mølbak K, et al. Pneumococcal disease seasonality: incidence, severity and the role of influenza activity. Eur Respir J. 2014;43(3):833-41. [
DOI:10.1183/09031936.00056813] [
PMID]
17. White AN, Ng V, Spain CV, Johnson CC, Kinlin LM, Fisman DN. Let the sun shine in: effects of ultraviolet radiation on invasive pneumococcal disease risk in Philadelphia, Pennsylvania. BMC Infect Dis. 2009;9(1):196. [
DOI:10.1186/1471-2334-9-196] [
PMID] [
PMCID]
18. Paynter S, Ware RS, Weinstein P, Williams G, Sly PD. Childhood pneumonia: a neglected, climate-sensitive disease? lancet. 2010;376(9755):1804-5. [
DOI:10.1016/S0140-6736(10)62141-1] [
PMID]
19. Kan H, London SJ, Chen H, Song G, Chen G, Jiang L, et al. Diurnal temperature range and daily mortality in Shanghai, China. Environ Res. 2007;103(3):424-31. [
DOI:10.1016/j.envres.2006.11.009] [
PMID]
20. Barba Evia JR. Climate change, globalization and their effect on infectious diseases. Is the Ebola fever virus a latent threat? Rev Mex de Pat Clín Med de Lab. 2016;63(3):124-32.
21. Berberian G, Rosanova MT. Impacto del cambio climático en las enfermedades infecciosas. Arch Argent Pediatr. 2012;110(1):39-45. [
DOI:10.5546/aap.2012.39] [
PMID]
22. Pappas G. Of mice and men: defining, categorizing and understanding the significance of zoonotic infections. Clin Microbiol Infect. 2011;17(3):321-5. [
DOI:10.1111/j.1469-0691.2010.03444.x] [
PMID] [
PMCID]
23. J Rodriguez-Morales A. Climate change, climate variability and brucellosis. Recent Pat Antiinfect Drug Discov. 2013;8(1):4-12. [
DOI:10.2174/1574891X11308010003] [
PMID]
24. Singh B, Sharma R, Gill J, Aulakh R, Banga H. Climate change, zoonoses and India. Rev Sci Tech. 2011;30(3):779-88. [
DOI:10.20506/rst.30.3.2073] [
PMID]
25. Bialvaei AZ, Sheikhalizadeh V, Mojtahedi A, Irajian G. Epidemiological burden of Listeria monocytogenes in Iran. J Basic Med Sci. 2018;21(8):770-80.
26. Lama JR, Seas CR, León-Barúa R, Gotuzzo E, Sack RB. Environmental temperature, cholera, and acute diarrhoea in adults in Lima, Peru. J Health Popul Nutr. 2004(4):399-403.
27. Codeço CT, Lele S, Pascual M, Bouma M, Ko AI. A stochastic model for ecological systems with strong nonlinear response to environmental drivers: application to two water-borne diseases. J R Soc Interface. 2008;5(19):247-52. [
DOI:10.1098/rsif.2007.1135] [
PMID] [
PMCID]
28. Joyner TA, Lukhnova L, Pazilov Y, Temiralyeva G, Hugh-Jones ME, Aikimbayev A, et al. Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan. PloS One. 2010;5(3):e9596. [
DOI:10.1371/journal.pone.0009596] [
PMID] [
PMCID]
29. Vasconcelos P, Costa Z, Travassos da Rosa E, Luna E, Rodrigues S, Barros V, et al. Epidemic of jungle yellow fever in Brazil, 2000: Implications of climatic alterations in disease spread. J Med Virol. 2001;65(3):598-604. [
DOI:10.1002/jmv.2078] [
PMID]
30. Klempa B. Hantaviruses and climate change. Clin Microbiol Infect. 2009;15(6):518-23. [
DOI:10.1111/j.1469-0691.2009.02848.x] [
PMID]
31. Parkinson AJ, Butler JC. Potential impacts of climate change on infectious diseases in the Arctic. Int J Circumpolar Health. 2005;64(5):478-86. [
DOI:10.3402/ijch.v64i5.18029] [
PMID]
32. Mas-Coma S, Valero MA, Bargues MD. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet Parasitol. 2009;163(4):264-80. [
DOI:10.1016/j.vetpar.2009.03.024] [
PMID]
33. Cardenas R, Sandoval CM, Rodriguez‐Morales AJ, Vivas P. Zoonoses and climate variability. Ann N Y Acad Sci. 2008;1149(1):326-30. [
DOI:10.1196/annals.1428.094] [
PMID]
34. Hoch T, Goebel J, Agoulon A, Malandrin L. Modelling bovine babesiosis: A tool to simulate scenarios for pathogen spread and to test control measures for the disease. Prev Vet Med. 2012;106(2):136-42. [
DOI:10.1016/j.prevetmed.2012.01.018] [
PMID]
35. Hermida RC, Ayala DE, Arroyave RJ. Circannual incidence of Giardia lamblia in Mexico. Chronobiol Int. 1990;7(4):329-40. [
DOI:10.1080/07420529009064639] [
PMID]
36. Rodríguez-Morales AJ, Delgado-López CA. Impact of climate change on zoonotic diseases in Latin America. Human and social dimensions of climate change2012. p. 265-86.
37. Levett PN. Leptospirosis. Clin Microbiol Rev. 2001;14(2):296-326. [
DOI:10.1128/CMR.14.2.296-326.2001] [
PMID] [
PMCID]
38. Uhlenhuth P. Experimintelle Untersuchungen uber die sogenannte Weilsche Krankheit (ansteckende Gelbsucht). Med Klin. 1915(44):1202-3.
39. Lau CL, Smythe LD, Craig SB, Weinstein P. Climate change, flooding, urbanisation and leptospirosis: fuelling the fire? Trans R Soc Trop Med Hyg. 2010;104(10):631-8. [
DOI:10.1016/j.trstmh.2010.07.002] [
PMID]
40. Blasdell KR, Morand S, Perera D, Firth C. Association of rodent-borne Leptospira spp. with urban environments in Malaysian Borneo. PLOS Negl Trop Dis. 2019;13(2):e0007141. [
DOI:10.1371/journal.pntd.0007141] [
PMID] [
PMCID]
41. Niang I, Osman-Elasha B, Githeko A, Yanda PZ, Medany M, Vogel A, et al. Africa climate change 2007. Impacts, adaptation and vulnerability: Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change: Cambridge University Press; 2008.
42. Bett B, Kiunga P, Gachohi J, Sindato C, Mbotha D, Robinson T, et al. Effects of climate change on the occurrence and distribution of livestock diseases. Prev Vet Med. 2017;137:119-29. [
DOI:10.1016/j.prevetmed.2016.11.019] [
PMID]
43. Dennis S, Fisher D. Climate change and infectious diseases: the next 50 years. Ann Acad Med Singapore. 2018;47(10):401-4. [
DOI:10.47102/annals-acadmedsg.V47N10p401] [
PMID]
44. Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F. Global Health Impacts of Floods: Epidemiologic Evidence. Epidemiol Rev. 2005;27(1):36-46. [
DOI:10.1093/epirev/mxi004] [
PMID]
45. Confalonieri U. Climate variability, vulnerability and health in Brazil. Terra Livre. 2003;19:193-204.
46. Ko AI, Reis MG, Dourado CMR, Johnson Jr WD, Riley LW, Group SLS. Urban epidemic of severe leptospirosis in Brazil. Lancet. 1999;354(9181):820-5. [
DOI:10.1016/S0140-6736(99)80012-9] [
PMID]
47. Sarkar U, Nascimento SF, Barbosa R, Martins R, Nuevo H, Kalofonos I, et al. Population-based case-control investigation of risk factors for leptospirosis during an urban epidemic. Am J Trop Med Hyg. 2002;66(5):605-10. [
DOI:10.4269/ajtmh.2002.66.605] [
PMID]
48. McMichael AJ, Woodruff RE, Hales S. Climate change and human health: present and future risks. Lancet. 2006;367(9513):859-69. [
DOI:10.1016/S0140-6736(06)68079-3] [
PMID]
49. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, et al. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. Plos Negl Trop Dis. 2015;9(9):e0003898. [
DOI:10.1371/journal.pntd.0003898] [
PMID] [
PMCID]
50. Hueffer K, Drown D, Romanovsky V, Hennessy T. Factors Contributing to Anthrax Outbreaks in the Circumpolar North. Eco Health. 2020;1(7):174-80. [
DOI:10.1007/s10393-020-01474-z] [
PMID]
51. Maksimović Z, Cornwell M, Semren O, Rifatbegović M. The apparent role of climate change in a recent anthrax outbreak in cattle. Rev Sci Tech Off Int Epiz. 2017;36(3):959-63. [
DOI:10.20506/rst.36.3.2727] [
PMID]
52. Waits A, Emelyanova A, Oksanen A, Abass K, Rautio A. Human infectious diseases and the changing climate in the Arctic. Environ Int. 2018;121:703-13. [
DOI:10.1016/j.envint.2018.09.042] [
PMID]
53. Ezhova E, Orlov D, Suhonen E, Kaverin D, Mahura A, Gennadinik V, et al. Climatic factors influencing the anthrax outbreak of 2016 in Siberia, Russia. Eco Health. 2021;18(2):217-28. [
DOI:10.1007/s10393-021-01549-5] [
PMID] [
PMCID]
54. Walsh MG, de Smalen AW, Mor SM. Climatic influence on anthrax suitability in warming northern latitudes. Sci Rep. 2018;8(1):1-9. [
DOI:10.1038/s41598-018-27604-w] [
PMID] [
PMCID]
55. Popova AY, Demina YV, Ezhlova EB, Kulichenko AN, Ryazanova AG, Maleev VV, et al. Outbreak of anthrax in the Yamalo-Nenets autonomous district in 2016, epidemiological peculiarities. Probl of Particularly Dangerous Infect. 2016; 20(4):42-6. [
DOI:10.21055/0370-1069-2016-4-42-46]
56. Simonova EG, Kartavaya SA, Titkov AV, Loktionova MN, Raichich SR, Tolpin VA, et al. Anthrax in the territory of Yamal: assessment of epizootiological and epidemiological risks. Problemy osobo opasnykh infektsii. 2017; 20(1):89-93. [
DOI:10.21055/0370-1069-2017-1-89-93]
57. Kangbai J, Momoh E. Anthropogenic climatic change risks a global anthrax outbreak: A short communication. J Trop Dis. 2017;5(244):2. [
DOI:10.4172/2329-891X.1000244]
58. Leylabadlo HE, Bialvaei AZ, Samadi Kafil H. Brucellosis in Iran: Why Not Eradicated? Clin Infect Dis. 2015;61(10):1629-30. [
DOI:10.1093/cid/civ646] [
PMID]
59. Epstein PR. Climate and health. Science. 1999;285(5426):347-8. [
DOI:10.1126/science.285.5426.347] [
PMID]
60. Spira AM. Assessment of travellers who return home ill. Lancet. 2003;361(9367):1459-69. [
DOI:10.1016/S0140-6736(03)13141-8] [
PMID]
61. Kunda J, Fitzpatrick J, Kazwala R, French NP, Shirima G, MacMillan A, et al. Health-seeking behaviour of human brucellosis cases in rural Tanzania. BMC Public Health. 2007;7(1):1-7. [
DOI:10.1186/1471-2458-7-315] [
PMID] [
PMCID]
62. Fosgate GT, Carpenter TE, Chomel BB, Case JT, DeBess EE, Reilly KF. Time-Space Clustering of Human Brucellosis, California, 1973-1992. Emerg Infect Dis. 2002;8(7):672-8. [
DOI:10.3201/eid0807.010351] [
PMID] [
PMCID]
63. Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):91-9. [
DOI:10.1016/S1473-3099(06)70382-6] [
PMID]
64. Memish ZA, Balkhy HH. Brucellosis and international travel. J Travel Med. 2004;11(1):49-55. [
DOI:10.2310/7060.2004.13551] [
PMID]
65. Makita K, Fèvre E, Waiswa C, Kaboyo W, DeClareBronsvoort B, Eisler M, et al. Human brucellosis in urban and peri-urban areas of Kampala, Uganda. Ann N Y Acad Sci. 2008;1149(1):309-11. [
DOI:10.1196/annals.1428.015] [
PMID]
66. Li G, Gao R, Zhang X, Zhu J. PP-030 Retrospective analysis of 118 cases of brucellosis in Northeast China. Int J Infect Dis. 2010;14:S33. [
DOI:10.1016/S1201-9712(10)60098-7]
67. Ferrari MJ, Garrott RA. Bison and Elk: Brucellosis Seroprevalence on a Shared Winter Range. J Wildl Manage. 2002;66(4):1246-54. [
DOI:10.2307/3802957]
68. Matope G, Bhebhe E, Muma JB, Oloya J, Madekurozwa RL, Lund A, et al. Seroprevalence of brucellosis and its associated risk factors in cattle from smallholder dairy farms in Zimbabwe. Trop Anim Health Prod. 2011;43(5):975-82. [
DOI:10.1007/s11250-011-9794-4] [
PMID]
69. Sørensen H, Albøge K, Misfeldt J. Botulism in Ammassalik. Ugeskr Laeg. 1993;155(2):108-9.
70. Castrodale LJ, Beller M, Wilson JF, Schantz PM, McManus DP, Zhang L-H, et al. Two atypical cases of cystic echinococcosis (Echinococcus granulosus) in Alaska, 1999. Am J Trop Med Hyg. 2002;66(3):325-7. [
DOI:10.4269/ajtmh.2002.66.325] [
PMID]
71. Balke E, Weber A, Fronk B. [Differentiation of Brucella by acrylamide-gel electrophoresis (author's transl)]. Zentralbl Bakteriol Orig A. 1977;238(1):80-5.
72. Li Y-J, Li X-L, Liang S, Fang L-Q, Cao W-C. Epidemiological features and risk factors associated with the spatial and temporal distribution of human brucellosis in China. BMC Infect Dis. 2013;13(1):547. [
DOI:10.1186/1471-2334-13-547] [
PMID] [
PMCID]
73. Lee HS, Her M, Levine M, Moore GE. Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010. Prev Vet Med. 2013;110(2):190-7. [
DOI:10.1016/j.prevetmed.2012.12.003] [
PMID]
74. Montiel DO, Frankena K, Udo H, Baer NMK, van der Zijpp A. Prevalence and risk factors for brucellosis in goats in areas of Mexico with and without brucellosis control campaign. Trop Anim Health Prod. 2013;45(6):1383-9. [
DOI:10.1007/s11250-013-0375-6] [
PMID]
75. Zhu H, Wang L, Lin D, Hong R, Ou J, Chen W, et al. Analysis on epidemiology and spatial-temporal clustering of human brucellosis in Fujian province, 2011-2016. Zhonghua Liuxingbingxue Zazhi. 2017;38(9):1212-7.
76. Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ Int. 2016;86:14-23. [
DOI:10.1016/j.envint.2015.09.007] [
PMID]
77. Rogers D, Randolph S. Climate Change and Vector-Borne Diseases. Adv Parasitol. 2006;62:345-81. [
DOI:10.1016/S0065-308X(05)62010-6] [
PMID]
78. Lata K, Das G, Verma R, Baghel R. Impact of climate variability on occurrence and distribution of vector and vector-borne parasitic diseases. J Entomol Zool. 2018;6(4):1388-93.
79. Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol. 2005;35(11-12):1309-18. [
DOI:10.1016/j.ijpara.2005.06.005] [
PMID]
80. Genchi C, Rinaldi L, Mortarino M, Genchi M, Cringoli G. Climate and Dirofilaria infection in Europe. Vet Parasitol. 2009;163(4):286-92. [
DOI:10.1016/j.vetpar.2009.03.026] [
PMID]
81. Nuttall PA. Climate change impacts on ticks and tick-borne infections. Biologia. 2021;77(6):1503-12. [
DOI:10.1007/s11756-021-00927-2]
82. Caminade C, McIntyre KM, Jones AE. Impact of recent and future climate change on vector‐borne diseases. Ann N Y Acad Sci. 2019;1436(1):157-73. [
DOI:10.1111/nyas.13950] [
PMID] [
PMCID]
83. Berggren C. The impact of climate change on zoonotic infectious diseases Identifying possible climate sensitive infections. 2017.
84. Bunyavanich S, Landrigan CP, McMichael AJ, Epstein PR. The impact of climate change on child health. Ambul Pediatr. 2003;3(1):44-52.
https://doi.org/10.1367/1539-4409(2003)003<0044:TIOCCO>2.0.CO;2 [
DOI:10.1367/1539-4409(2003)0032.0.CO;2] [
PMID]
85. Bouchard C, Dibernardo A, Koffi J, Wood H, Leighton P, Lindsay L. Climate change and infectious diseases: The challenges N Increased risk of tick-borne diseases with climate and environmental changes. Can Commun Dis Rep. 2019;45(4):83-9. [
DOI:10.14745/ccdr.v45i04a02] [
PMID] [
PMCID]
86. Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358(9275):16-8. [
DOI:10.1016/S0140-6736(00)05250-8] [
PMID]
87. Ostfeld RS, Brunner JL. Climate change and Ixodes tick-borne diseases of humans. Philos Trans R Soc. 2015;370(1665):20140051. [
DOI:10.1098/rstb.2014.0051] [
PMID] [
PMCID]
88. Desvars-Larrive A, Liu X, Hjertqvist M, Sjöstedt A, Johansson A, Ryden P. High-risk regions and outbreak modelling of tularemia in humans. Epidemiol Infect. 2017;145(3):482-90. [
DOI:10.1017/S0950268816002478] [
PMID] [
PMCID]
89. Sjöstedt A. Tularemia: history, epidemiology, pathogen physiology, and clinical manifestations. Ann N Y Acad Sci. 2007;1105(1):1-29. [
DOI:10.1196/annals.1409.009] [
PMID]
90. Andersen LK, Davis MD. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the International Society of Dermatology Climate Change Task Force. Int J Dermatol. 2017;56(3):252-9. [
DOI:10.1111/ijd.13438] [
PMID]
91. Helvacı S, Gedikoğlu S, Akalın H, Oral H. Tularemia in Bursa, Turkey: 205 cases in ten years. Eur J Epidemiol. 2000;16(3):271-6. [
DOI:10.1023/A:1007610724801] [
PMID]
92. Anda P, del Pozo JS, García JD, Escudero R, Peña FG, Velasco ML, et al. Waterborne outbreak of tularemia associated with crayfish fishing. Emerging Infect Dis. 2001;7(3 Suppl):575-82. [
DOI:10.3201/eid0703.010340] [
PMID] [
PMCID]
93. Reintjes R, Dedushaj I, Gjini A, Jorgensen TR, Cotter B, Lieftucht A, et al. Tularemia Outbreak Investigation in Kosovo: Case Control and Environmental Studies. Emerging Infect Dis. 2002;8(1):69-73. [
DOI:10.3201/eid0801.010131] [
PMID] [
PMCID]
94. Palo TR, Ahlm C, Tärnvik A. Climate variability reveals complex events for tularemia dynamics in man and mammals. Ecol Soc. 2005;10(1). [
DOI:10.5751/ES-01303-100122]
95. Rydén P, Björk R, Schäfer ML, Lundström JO, Petersén B, Lindblom A, et al. Outbreaks of Tularemia in a Boreal Forest Region Depends on Mosquito Prevalence. J Infect Dis. 2012;205(2):297-304. [
DOI:10.1093/infdis/jir732] [
PMID] [
PMCID]
96. Ryden P, Sjöstedt A, Johansson A. Effects of climate change on tularaemia disease activity in Sweden. Glob Health Action. 2009;2(1):2063. [
DOI:10.3402/gha.v2i0.2063] [
PMID] [
PMCID]
97. Vezzulli L, Grande C, Reid PC, Hélaouët P, Edwards M, Höfle MG, et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci. 2016;113(34):E5062-71. [
DOI:10.1073/pnas.1609157113] [
PMID] [
PMCID]
98. Baker-Austin C, Trinanes J, Gonzalez-Escalona N, Martinez-Urtaza J. Non-Cholera Vibrios: The Microbial Barometer of Climate Change. Trends Microbiol. 2017;25(1):76-84. [
DOI:10.1016/j.tim.2016.09.008] [
PMID]
99. Mason PR. Zimbabwe experiences the worst epidemic of cholera in Africa. J Infect Dev Ctries. 2009;3(02):148-51. [
DOI:10.3855/jidc.62] [
PMID]
100. Collins A, Lucas M, Islam M, Williams L. Socio‐economic and environmental origins of cholera epidemics in Mozambique: guidelines for tackling uncertainty in infectious disease prevention and control. Int J Environ Stud. 2006;63(5):537-49. [
DOI:10.1080/00207230600963122]
101. Belkin S, Colwell RR. Oceans and health: pathogens in the marine environment: Springer Science+Business Media; 2005. [
DOI:10.1007/b102184]
102. Paz S, Bisharat N, Paz E, Kidar O, Cohen D. Climate change and the emergence of Vibrio vulnificus disease in Israel. Environ Res. 2007;103(3):390-6. [
DOI:10.1016/j.envres.2006.07.002] [
PMID]
103. Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E. Climate change and wildlife diseases: when does the host matter the most? Ecology. 2009;90(4):912-20. [
DOI:10.1890/08-0616.1] [
PMID]
104. Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, et al. Climate Change Influences on Marine Infectious Diseases: Implications for Management and Society. Ann Rev Mar Sci. 2014;6(249-277). [
DOI:10.1146/annurev-marine-010213-135029] [
PMID]
105. Richardson AJ. In hot water: zooplankton and climate change. ICES J Mar Sci. 2008;65(3):279-95. [
DOI:10.1093/icesjms/fsn028]
106. Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Chang. 2013;3(1):73-7. [
DOI:10.1038/nclimate1628]
107. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17(9):569-86. [
DOI:10.1038/s41579-019-0222-5] [
PMID] [
PMCID]
108. Chua PL, Ng CFS, Tobias A, Seposo XT, Hashizume M. Associations between ambient temperature and enteric infections by pathogen: a systematic review and meta-analysis. Lancet Planet Health. 2022;6(3):e202-18. [
DOI:10.1016/S2542-5196(22)00003-1] [
PMID]
109. Checkley W, Epstein LD, Gilman RH, Figueroa D, Cama RI, Patz JA, et al. Effects of EI Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet. 2000;355(9202):442-50.
https://doi.org/10.1016/S0140-6736(99)06215-7 [
DOI:10.1016/S0140-6736(00)82010-3] [
PMID]
110. Yun J, Greiner M, Höller C, Messelhäusser U, Rampp A, Klein G. Association between the ambient temperature and the occurrence of human Salmonella and Campylobacter infections. Sci Rep. 2016;6(1):1-7. [
DOI:10.1038/srep28442] [
PMID] [
PMCID]
111. Wallace J, Stanley K, Currie J, Diggle P, Jones K. Seasonality of thermophilic Campylobacter populations in chickens. J Appl Microbiol. 1997;82(2):219-24. [
DOI:10.1111/j.1365-2672.1997.tb02854.x] [
PMID]
112. Tam C, Rodrigues L, O'brien S, Hajat S. Temperature dependence of reported Campylobacter infection in England, 1989-1999. Epidemiol Infect. 2006;134(1):119-25. [
DOI:10.1017/S0950268805004899] [
PMID] [
PMCID]
113. Ravel A, Smolina E, Sargeant JM, Cook A, Marshall B, Fleury MD, et al. Seasonality in Human Salmonellosis: Assessment of Human Activities and Chicken Contamination as Driving Factors. Foodborne Pathog Dis. 2010;7(7):785-94. [
DOI:10.1089/fpd.2009.0460] [
PMID]
114. Mackey B, Kerridge A. The effect of incubation temperature and inoculum size on growth of salmonellae in minced beef. Int J Food Microbiol. 1988;6(1):57-65. [
DOI:10.1016/0168-1605(88)90085-2] [
PMID]
115. Fleury M, Charron DF, Holt JD, Allen OB, Maarouf AR. A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. Int J Biometeorol. 2006;50(6):385-91. [
DOI:10.1007/s00484-006-0028-9] [
PMID]
116. Burnham JP. Climate change and antibiotic resistance: a deadly combination. Ther Adv Infect Dis. 2021;8:2049936121991374. [
DOI:10.1177/2049936121991374] [
PMID] [
PMCID]
117. Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563-602. [
DOI:10.1128/mr.58.3.563-602.1994] [
PMID] [
PMCID]
118. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355-62. [
DOI:10.1016/S1473-3099(11)70059-7] [
PMID]
119. MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Chang. 2018;8(6):510-4. [
DOI:10.1038/s41558-018-0161-6] [
PMID] [
PMCID]
120. McGough SF, MacFadden DR, Hattab MW, Mølbak K, Santillana M. Rates of increase of antibiotic resistance and ambient temperature in Europe: a cross-national analysis of 28 countries between 2000 and 2016. Euro Surveill. 2020;25(45):1900414. [
DOI:10.2807/1560-7917.ES.2020.25.45.1900414] [
PMID] [
PMCID]
121. Economic UNDoI, Urbanization UNICoAPitCo. Ageing and Urbanization: Proceedings of the United Nations International Conference on Ageing Populations in the Context of Urbanization, Sendai (Japan), 12-16 September 1988: United Nations Publications; 1991.
122. Khasnis AA, Nettleman MD. Global warming and infectious disease. Arch Med Res. 2005;36(6):689-96. [
DOI:10.1016/j.arcmed.2005.03.041] [
PMID]
123. Wilson ME. Travel and the emergence of infectious diseases. Emerging Infect Dis. 1995;1(2):39-46. [
DOI:10.3201/eid0102.950201] [
PMID] [
PMCID]
124. Vearey J. Moving forward: why responding to migration, mobility and HIV in South (ern) Africa is a public health priority. J Int AIDS Soc. 2018;21:e25137. [
DOI:10.1002/jia2.25137] [
PMID] [
PMCID]