year 17, Issue 4 (July - August 2023)                   Iran J Med Microbiol 2023, 17(4): 423-431 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jatmiko S W, Hartono H, Ardyanto T D, Indarto D. The Intestinal Zonulin and Zonula Occludens 1 Protein Expression and Lipopolysaccharide Levels In ddY Mice Injected with Dengue Virus Non-Structural Protein 1. Iran J Med Microbiol 2023; 17 (4) :423-431
URL: http://ijmm.ir/article-1-2004-en.html
1- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia , safari.wahyu@ums.ac.id
2- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
Abstract:   (415 Views)

Background and Aim: Dengue virus infection remains a health problem. Dengue Virus Non-Structural protein 1 (NS1) increases the release of proinflammatory cytokines that induce intestinal zonulin expression. As a result, the ZO-1 protein translocates to the cytoplasm, which increases enterocyte permeability. This study aimed to investigate the effects of dengue NS1 on intestinal zonulin and ZO-1 expression, intestinal weight, and serum LPS.
Materials and Methods: This experiment used 18 ddY mice with a pre-posttest control group design. Mice were randomly divided into control (C), PBS (T1), and PBS+NS1 (T2) groups. Mice in the T1 and 2 groups were intravenously injected with 500 µL PBS and 50 µg NS1, respectively. Blood samples were collected before and after the three-day treatment. The intestines were weighted directly and were then embedded with formalin for immunostaining. Serum LPS were determined using ELISA. Data were analyzed using paired t-test and ANOVA.
Results: The T2 group had the highest zonulin expression (histoscore=8) compared to the T1 (histoscores=7.33) and C (histoscore=6.33) groups but were not significant (p=0.135). Intestinal ZO-1 expression did not increase in the T groups compared to the C group (p=0.368). The intestine weight in the C group was significantly lower than the T group (p=0.001). After treatment, serum LPS levels in the T2 group were higher (0.34 pg/mL) than before treatment (0.12 pg/mL; p=0.118), but not in the T1 group (p=0.384). Meanwhile, there was a significant decrease in serum LPS levels in the C group (p=0.046).
Conclusion: Injection of 50 µg dengue virus NS1 has a minor effect on intestinal permeability in ddY mice.

Full-Text [PDF 801 kb]   (109 Downloads) |   |   Full-Text (HTML)  (48 Views)  
Type of Study: Original Research Article | Subject: Medical Virology
Received: 2023/02/13 | Accepted: 2023/07/30 | ePublished: 2023/09/27

References
1. Mustafa MS, Rasotgi V, Jain S, Gupta V. Discovery of fifth serotype of dengue virus (DENV-5): A new public health dilemma in dengue control. Med J Armed Forces India. 2015;71(1):67-70. [DOI:10.1016/j.mjafi.2014.09.011] [PMID] [PMCID]
2. Utama IMS, Lukman N, Sukmawati DD, Alisjahbana B, Alam A, Murniati D, et al. Dengue viral infection in Indonesia: Epidemiology, diagnostic challenges, and mutations from an observational cohort study. PLoS Negl Trop Dis. 2019;13(10):e0007785. [DOI:10.1371/journal.pntd.0007785] [PMID] [PMCID]
3. Lin G-L, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147. [DOI:10.3389/fimmu.2018.02147] [PMID] [PMCID]
4. Khan J, Ghaffar A, Khan SA. The changing epidemiological pattern of Dengue in Swat, Khyber Pakhtunkhwa. PloS One. 2018;13(4):e0195706. [DOI:10.1371/journal.pone.0195706] [PMID] [PMCID]
5. Duarte JL, Diaz-Quijano FA, Batista AC, Giatti LL. Climatic variables associated with dengue incidence in a city of the Western Brazilian Amazon region. Revista da Sociedade Brasileira de Medicina Tropical. 52: scielo; 2019. [DOI:10.1590/0037-8682-0429-2018] [PMID]
6. Masyeni S, Yohan B, Somia IKA, Myint KSA, Sasmono RT. Dengue infection in international travellers visiting Bali, Indonesia. J Travel Med. 2018;25(1):tay061. [DOI:10.1093/jtm/tay061] [PMID] [PMCID]
7. Wang W-H, Urbina AN, Chang MR, Assavalapsakul W, Lu P-L, Chen Y-H, et al. Dengue hemorrhagic fever - A systemic literature review of current perspectives on pathogenesis, prevention and control. J Microbiol Immunol Infect. 2020;53(6):963-78. [DOI:10.1016/j.jmii.2020.03.007] [PMID]
8. Dolan PT, Taguwa S, Rangel MA, Acevedo A, Hagai T, Andino R, et al. Principles of dengue virus evolvability derived from genotype-fitness maps in human and mosquito cells. Elife. 2021;10:e61921. [DOI:10.7554/eLife.61921] [PMID] [PMCID]
9. karsari d. Genetic Stability The Protein Encoding Envelope (E) Genes Dengue Virus Serotype-4 Passaged in Vero Cell As A Candidate Chimera Vaccine Material. J Stem Cell Res Tis Eng. 2021;4(2):40-8. [DOI:10.20473/jscrte.v4i2.22748]
10. Chen HR, Lai YC, Yeh TM. Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci. 2018;25(1):58. https://doi.org/10.1186/s12929-017-0368-2 [DOI:10.1186/s12929-018-0462-0]
11. Xie X, Zou J, Puttikhunt C, Yuan Z, Shi P-Y. Two Distinct Sets of NS2A Molecules Are Responsible for Dengue Virus RNA Synthesis and Virion Assembly. J Virol. 2014;89(2):1298-313. [DOI:10.1128/JVI.02882-14] [PMID] [PMCID]
12. Silva EM, Conde JN, Allonso D, Ventura GT, Coelho DR, Carneiro PH, et al. Dengue virus nonstructural 3 protein interacts directly with human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and reduces its glycolytic activity. Sci Rep. 2019;9(1):2651. [DOI:10.1038/s41598-019-39157-7] [PMID] [PMCID]
13. Teo Catherine Su H, Chu Justin Jang H. Cellular Vimentin Regulates Construction of Dengue Virus Replication Complexes through Interaction with NS4A Protein. J Virol. 2014;88(4):1897-913. [DOI:10.1128/JVI.01249-13] [PMID] [PMCID]
14. Li Q, Kang C. Dengue virus NS4B protein as a target for developing antivirals. Front Cell Infect Microbiol [Internet]. 2022; 12:[959727 p.]. [DOI:10.3389/fcimb.2022.959727] [PMID] [PMCID]
15. Iglesias Nestor G, Filomatori Claudia V, Gamarnik Andrea V. The F1 Motif of Dengue Virus Polymerase NS5 Is Involved in Promoter-Dependent RNA Synthesis. Virol J. 2011;85(12):5745-56. [DOI:10.1128/JVI.02343-10] [PMID] [PMCID]
16. Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Scim Transl Med. 2015;7(304):304ra141. [DOI:10.1126/scitranslmed.aaa3787] [PMID]
17. Perdomo-Celis F, Romero F, Salgado DM, Vega R, Rodríguez J, Angel J, et al. Identification and Characterization at the Single-Cell Level of Cytokine-Producing Circulating Cells in Children With Dengue. J Infect Dis. 2018;217(9):1472-80. [DOI:10.1093/infdis/jiy053] [PMID]
18. Modhiran N, Watterson D, Blumenthal A, Baxter AG, Young PR, Stacey KJ. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol. 2017;95(5):491-5. [DOI:10.1038/icb.2017.5] [PMID]
19. Chen J, Ng MM, Chu JJ. Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection. PLoS Pathog. 2015;11(7):e1005053. [DOI:10.1371/journal.ppat.1005053] [PMID] [PMCID]
20. Guo H-Y, Zhang X-C, Jia R-Y. Toll-Like Receptors and RIG-I-Like Receptors Play Important Roles in Resisting Flavivirus. J Immunol Res. 2018;2018:6106582. [DOI:10.1155/2018/6106582] [PMID] [PMCID]
21. Douglas KO, Samuels TA, Gittens-St. Hilaire M. Serum LPS associated with Hantavirus and dengue disease severity in Barbados. Viruses. 2019;11(9):838. [DOI:10.3390/v11090838] [PMID] [PMCID]
22. Bertani B, Ruiz N. Function and Biogenesis of Lipopolysaccharides. Ecosal Plus. 2018;8(1):1128. [DOI:10.1128/ecosalplus.ESP-0001-2018] [PMID] [PMCID]
23. Vejchapipat P, Theamboonlers A, Chongsrisawat V, Poovorawan Y. An evidence of intestinal mucosal injury in dengue infection. Southeast Asian J Trop Med Public Health. 2006;37(1):79-82.
24. van de Weg CAM, Pannuti CS, de Araujo ESA, van den Ham H-J, Andeweg AC, Boas LSV, et al. Microbial translocation is associated with extensive immune activation in dengue virus infected patients with severe disease. PLoS Negl Trop Dis. 2013;7(5):e2236. [DOI:10.1371/journal.pntd.0002236] [PMID] [PMCID]
25. Płóciennikowska A, Hromada-Judycka A, Borzęcka K, Kwiatkowska K. Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cell Mol Life Sci. 2015;72:557-81. [DOI:10.1007/s00018-014-1762-5] [PMID] [PMCID]
26. Rathore APS, St. John AL. Immune responses to dengue virus in the skin. Open Biol. 2018;8(8):180087. [DOI:10.1098/rsob.180087] [PMID] [PMCID]
27. Fernandes-Santos C, Azeredo ELd. Innate immune response to dengue virus: Toll-like receptors and antiviral response. Viruses. 2022;14(5):992. [DOI:10.3390/v14050992] [PMID] [PMCID]
28. Caviglia GP, Tucci A, Pellicano R, Fagoonee S, Rosso C, Abate ML, et al. Clinical response and changes of cytokines and zonulin levels in patients with diarrhoea-predominant irritable bowel syndrome treated with Bifidobacterium Longum ES1 for 8 or 12 weeks: a preliminary report. J Clin Med. 2020;9(8):2353. [DOI:10.3390/jcm9082353] [PMID] [PMCID]
29. Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers. 2013;1(5):e27321. [DOI:10.4161/tisb.27321] [PMID] [PMCID]
30. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4):e1251384. [DOI:10.1080/21688370.2016.1251384] [PMID] [PMCID]
31. Wang W, Uzzau S, Goldblum SE, Fasano A. Human zonulin, a potential modulator of intestinal tight junctions. J Cell Sci. 2000;113(24):4435-40. [DOI:10.1242/jcs.113.24.4435] [PMID]
32. Serek P, Oleksy-Wawrzyniak M. The effect of bacterial infections, probiotics and zonulin on intestinal barrier integrity. Int J Mol Sci. 2021;22(21):11359. [DOI:10.3390/ijms222111359] [PMID] [PMCID]
33. Heinemann U, Schuetz A. Structural features of tight-junction proteins. Int J Mol Sci. 2019;20(23):6020. [DOI:10.3390/ijms20236020] [PMID] [PMCID]
34. Smyth MC. Intestinal permeability and autoimmune diseases. Biosci Horiz. 2017;10:hzx015. [DOI:10.1093/biohorizons/hzx015]
35. Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocrinol Soc. 2020;4(2):bvz039. [DOI:10.1210/jendso/bvz039] [PMID] [PMCID]
36. Palomino-Kobayashi LA, Ymaña B, Ruiz J, Mayanga-Herrera A, Ugarte-Gil MF, Pons MJ. Zonulin, a marker of gut permeability, is associated with mortality in a cohort of hospitalised peruvian COVID-19 patients. Front Cell Infect Microbiol. 2022;12:1000291. https://doi.org/10.3389/fcimb.2022.1062174 [DOI:10.3389/fcimb.2022.1000291]
37. Giron L, Dweep H, Yin X, Wang H, Damra M, Goldman A, et al. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front Immunol. 2020;12:686240. [DOI:10.3389/fimmu.2021.686240] [PMID] [PMCID]
38. Arifin WN, Zahiruddin WM. Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays J Med Sci. 2017;24(5):101-5. [DOI:10.21315/mjms2017.24.5.11] [PMID] [PMCID]
39. Scudamore CL, Busk N, Vowell K. A simplified necropsy technique for mice: making the most of unscheduled deaths. Lab Anim. 2014;48(4):342-4. [DOI:10.1177/0023677214536555] [PMID]
40. Ren S, Wang C, Chen A, Lv W, Gao R. The probiotic Lactobacillus paracasei ameliorates diarrhea cause by Escherichia coli O8via gut microbiota Modulation1. FRONT NUTR. 2022;9:878808. [DOI:10.3389/fnut.2022.878808] [PMID] [PMCID]
41. Asmar RE, Panigrahi P, Bamford P, Berti I, Not T, Coppa GV, et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterol. 2002;123(5):1607-15. [DOI:10.1053/gast.2002.36578] [PMID]
42. Lee PX, Ting DHR, Boey CPH, Tan ETX, Chia JZH, Idris F, et al. Relative contribution of nonstructural protein 1 in dengue pathogenesis. J Exp Med. 2020;217(9):e20191548. [DOI:10.1084/jem.20191548] [PMID] [PMCID]
43. Avirutnan P, Zhang L, Punyadee N, Manuyakorn A, Puttikhunt C, Kasinrerk W, et al. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E. PLoS Pathog. 2007;3(11):e183. [DOI:10.1371/journal.ppat.0030183] [PMID] [PMCID]
44. Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp. 2018;6:1-18. [DOI:10.1186/s40635-018-0203-4] [PMID] [PMCID]
45. Wang K, Chen D, Yu B, He J, Mao X, Huang Z, et al. Eugenol alleviates transmissible gastroenteritis virus-induced intestinal epithelial injury by regulating NF-κB signaling pathway. Front Immunol. 2022;13:921613. [DOI:10.3389/fimmu.2022.921613] [PMID] [PMCID]
46. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the Tight Junction Protein ZO-1 in Dextran Sulfate Sodium Induced Colitis. J Surg Res. 2007;140(1):12-9. [DOI:10.1016/j.jss.2006.07.050] [PMID]
47. Li Q, Zhang Q, Zhang M, Wang C, Zhu Z, Li N, et al. Effect of n‐3 polyunsaturated fatty acids on membrane microdomain localization of tight junction proteins in experimental colitis. FEBS J. 2008;275(3):411-20. [DOI:10.1111/j.1742-4658.2007.06210.x] [PMID]
48. Mazzon E, Cuzzocrea S. Role of iNOS in hepatocyte tight junction alteration in mouse model of experimental colitis. Cell Mol Biol. 2003;49(1):45-57.
49. Chen H-R, Chao C-H, Liu C-C, Ho T-S, Tsai H-P, Perng G-C, et al. Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLoS Pathog. 2018;14(4):e1007033. [DOI:10.1371/journal.ppat.1007033] [PMID] [PMCID]
50. Chen H-R, Chuang Y-C, Lin Y-S, Liu H-S, Liu C-C, Perng G-C, et al. Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Negl Trop Dis. 2016;10(7):e0004828. [DOI:10.1371/journal.pntd.0004828] [PMID] [PMCID]
51. Jatmiko SW. Pengaruh Non-Structural 1 Antigen Dengue Virus-2 Terhadap Inflamasi Sistemik, Protein Fase Akut, dan Kebocoran Intestinal pada Mencit Ddy: UNS (Sebelas Maret University); 2023.
52. Watanabe S, Chan Kitti Wing K, Wang J, Rivino L, Lok S-M, Vasudevan Subhash G. Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol. 2015;89(11):5847-61. [DOI:10.1128/JVI.00216-15] [PMID] [PMCID]
53. Mohan C. Buffers. A guide for the preparation and use of buffers in biological systems2006. p. 20-1.
54. Alcon-LePoder S, Drouet M-T, Roux P, Frenkiel M-P, Arborio M, Durand-Schneider A-M, et al. The Secreted Form of Dengue Virus Nonstructural Protein NS1 Is Endocytosed by Hepatocytes and Accumulates in Late Endosomes: Implications for Viral Infectivity. Virol J. 2005;79(17):11403-11. [DOI:10.1128/JVI.79.17.11403-11411.2005] [PMID] [PMCID]
55. Sarathy Vanessa V, White M, Li L, Gorder Summer R, Pyles Richard B, Campbell Gerald A, et al. A Lethal Murine Infection Model for Dengue Virus 3 in AG129 Mice Deficient in Type I and II Interferon Receptors Leads to Systemic Disease. J Virol. 2014;89(2):1254-66. [DOI:10.1128/JVI.01320-14] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc