year 17, Issue 3 (May - June 2023)                   Iran J Med Microbiol 2023, 17(3): 346-353 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abou Zeid M A, Samir A, Ezzat Hassan A. Rapid Molecular Technique for Detection of Food Borne Bacillus cereus Pathogen. Iran J Med Microbiol 2023; 17 (3) :346-353
URL: http://ijmm.ir/article-1-1931-en.html
1- Department of Bacteriology, Animal Health Research Institute, Agricultural Research Center (ARC), Kafr El-Sheikh Regional Laboratory, Kafr El-Sheikh, Egypt , Kindmemo@yahoo.com
2- Department of Biotechnology, Animal Health Research Institute, Agricultural Research Center (ARC), Reference Laboratory for Veterinary Quality Control on Poultry Production, Giza, Egypt
3- Department of Food Hygiene, Animal Health Research Institute, Agricultural Research Center (ARC), Giza, Egypt
Abstract:   (1670 Views)

Background and Aim: Bacillus cereus is accountable for several outbreaks of diseases spread by food. Therefore, the study aimed to use routine culture methods and direct PCR to detect the foodborne bacterial pathogen and its enterotoxins.
Materials and Methods: In the present study, a total of 75 Kibda sandwiches, Sausage sandwiches, Chicken Luncheons, Beef Meat luncheons, and Chicken shawarma (Fifteen samples of each) were collected from different places in Kafr El-Sheikh governorate, Egypt, from July to September 2022. isolation, identification, and rapid analysis by PCR were done to find Foodborne bacterial pathogens in samples.
Results: Bacterial isolation revealed 17 positive samples from different food types. From 17 infected samples, 40% were Kibda, 26.6% were Sausage, 20% were Chicken luncheon, and 13.3% were positive for Meat luncheon and Chicken shawarma sandwiches. Using PCR to identify B. cereus from positive isolates (group A), 8 isolates were detected having groEL, nhe & cytK genes amplified at 533, 766, and 421 bp respectively. Also, the PCR, which was used to detection of Bacillus cereus directly in positive samples (group B) and revealed that 8 B. cereus in samples with its enterotoxins genes nhe & cytK, while group C which represents some random food samples of negative isolation results revealed that 3 samples were infected by Bacillus cereus.
Conclusion: PCR assay was a sensitive & specific diagnostic tool in detecting Bacillus cereus with its enterotoxins genes directly from food samples, even in the presence of low numbers of B. cereus bacteria that traditional isolation and identification methods cannot detect.

Keywords: PCR, B. cereus, groEL, nhe, cytK
Full-Text [PDF 736 kb]   (594 Downloads) |   |   Full-Text (HTML)  (402 Views)  
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2023/01/20 | Accepted: 2023/04/25 | ePublished: 2023/06/26

References
1. Vega-Gálvez A, Miranda M, Vergara J, Uribe E, Puente L, Martínez EA. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric. 2010;90(15):2541-7. [DOI:10.1002/jsfa.4158] [PMID]
2. Hall JA, Goulding JS, Bean NH, Tauxe RV, Hedberg CW. Epidemiologic profiling: evaluating foodborne outbreaks for which no pathogen was isolated by routine laboratory testing: United States, 1982-9. Epidemiol Infect. 2001;127(3):381-7. [DOI:10.1017/S0950268801006161] [PMID] [PMCID]
3. Riemann H. Food borne Infections and Intoxications, Elsevier, San Diego Ca,Osfayo-Barbe Km, Schrenzelj, Freyj, Studer R, Korffc, Bellidc, Parvexpp, Rimensbergerpc, Schappi Mg. Food poisoning is a cause of acute liver failure. Pediatr Infect Dis J. 2006(27):846-7. [DOI:10.1097/INF.0b013e318170f2ae] [PMID]
4. Carroll LM, Wiedmann M, Kovac J. Proposal of a Taxonomic Nomenclature for the Bacillus cereus Group Which Reconciles Genomic Definitions of Bacterial Species with Clinical and Industrial Phenotypes. MBio. 2020;11(1):10-128. [DOI:10.1128/mBio.00034-20] [PMID] [PMCID]
5. Food Standard Australia New Zealand (FSANZ). Bacillus cereus. 2013.
6. Carroll LM, Cheng RA, Wiedmann M, Kovac J. Keeping up with the Bacillus cereus group: taxonomy through the genomics era and beyond. Crit Rev Food Sci Nutr. 2022;62(28):7677-702. [DOI:10.1080/10408398.2021.1916735] [PMID]
7. Lund T, De Buyser ML, Granum PE. A new cytotoxin from Bacillus cereus that may cause necrotic enteritis. Mol Microbiol. 2000;38(2):254-61. [DOI:10.1046/j.1365-2958.2000.02147.x] [PMID]
8. Agata N, Ohta M, Arakawa Y, Mori M. The bceT gene of Bacillus cereus encodes an enterotoxic protein. Microbiol. 1995;141(4):983-8. [DOI:10.1099/13500872-141-4-983] [PMID]
9. Ehling-Schulz M, Messelhäusser U. Bacillus "next generation" diagnostics: moving from detection toward subtyping and risk-related strain profiling. Front Microbiol. 2013;4:32. [DOI:10.3389/fmicb.2013.00032] [PMID] [PMCID]
10. APHA "American Public Health Association". Compendium of Methods for the Microbiological examination of Foods. Washington, D.C USA; 2001.
11. Procop G, Church D, Hall G, Janda W, Koneman E, Schreckenberger P, et al. Aerobic and facultative Gram-positive bacilli‖. In Koneman's Color Atlas and Textbook of Diagnostic Microbiology. USA: Lippincott Williams and Wilkins Company, Philadelphia; 2017.
12. Das S, Lalitha K, Thampuran N. Isolation and molecular characterization of atypical enterotoxigenic Bacillus cereus with negative Voges-Proskauer reaction from Indian White Shrimp Fenneropenaeus indicus Indian J Fish. 2013;60(4):113-7.
13. Ehling-Schulz M, Guinebretière M. AMonthan; O Berge; M Fricker; B Svensson. FEMS Microbiol Let. 2006;260(2):232-40. [DOI:10.1111/j.1574-6968.2006.00320.x] [PMID]
14. Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett. 1997;157(2):223-8. [DOI:10.1111/j.1574-6968.1997.tb12776.x] [PMID]
15. Yu S, Yu P, Wang J, Li C, Guo H, Liu C, et al. A Study on Prevalence and Characterization of Bacillus cereus in Ready-to-Eat Foods in China. Front Microbiol. 2020;10:3043. [DOI:10.3389/fmicb.2019.03043] [PMID] [PMCID]
16. Tewari A, Singh SP, Singh R. Incidence and enterotoxigenic profile of Bacillus cereus in meat and meat products of Uttarakhand, India. J Food Sci Technol. 2015;52:1796-801. [DOI:10.1007/s13197-013-1162-0] [PMID] [PMCID]
17. Mostafa NF, Elkenany RM, Younis G. Characterization of Bacillus cereus isolated from contaminated foods with sequencing of virulence genes in Egypt. Braz J Biol. 2022;84:e257516. [DOI:10.1590/1519-6984.257516] [PMID]
18. Mousa D, Abd El Tawab A, El Hofy F, Maarouf A. Molecular studies on antibiotic resistant Bacillus cereus isolated from meat products and human in Kaliobia, Egypt. Benha Vet Med J. 2020;38(2):125-30. [DOI:10.21608/bvmj.2020.25802.1187]
19. Samir MM, Hanan MTE, Wafa FA, editors. Incidence of Bacillus cereus in some raw and cooked meat products and its control by heat treatment2012 2012: Massive Conferences and Trade Fairs.
20. El Rahman SSA, Samaha IA, Haggag YN, Nossair MA. Incidence of Some Pathogenic Bacteria in Fast Food Sandwiches. Alex J Vet Sci. 2018;59(2):103-8. [DOI:10.5455/ajvs.293290]
21. Abostate MAM, Zahran DA, El-Hifnawi HN. Incidence of Bacillus cereus in some meat products and the effect of gamma radiation on its toxin (s). Int J Agric Biol. 2006;8:1-4.
22. El-Sayed AA. Probable dangers from take away meat products meals: PhD thesis. Food Control Dep, Fac Vet Med, Zagazig University; 2015.
23. Ahmed F, Hassan MA, Amin R, Eleiwa N. Incidence and Characterization of Bacillus Cereus in Some Meat Products Using PCR. Benha Vet Med J. 2019;37(1):86-90. [DOI:10.21608/bvmj.2019.18074.1114]
24. Meshref AH. Incidence of some pathogenic bacteria in fast foods: Thesis, Master of Veterinary Medicine, Alexandria University, Egypt; 2018.
25. Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning tox. FEMS Microbiol Rev. 2008;32(4):579-606. [DOI:10.1111/j.1574-6976.2008.00112.x] [PMID]
26. Christison CA, Lindsay D, Holy A. Microbiological survey of ready-to-eat foods and associated preparation surfaces in retail delicatessens, Johannesburg, South Africa. Food Control. 2008;19:727-33. [DOI:10.1016/j.foodcont.2007.07.004]
27. Cho JI, Lee SH, Lim JS, Koh YJ, Kwak HS, Hwang IG. Detection and distribution of food-borne bacteria in ready-to-eat foods in Korea. Food Sci Biotechnol. 2011;20(2):525-9. https://doi.org/10.1007/s10068-010-0073-3 [DOI:10.1007/s10068-011-0073-y]
28. Jalalpoor S, Kermanshahi R, Noohi A, Zarkesh Esfahani H. Role of surface layer nanostructure and production of β-lactamase in penicillin resistant Bacillus cereus strains. Iran J Med Microbiol. 2010;4(1):42-8.
29. Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000;2(2):189-98. [DOI:10.1016/S1286-4579(00)00269-0] [PMID]
30. Murray P, Baron E, Jorgensen J, Landry M, Pfaller M. Manual of clinical microbiology. 9 ed. Washington D.C. USA: American Society of Microbiology Press; 2007.
31. Hoton FM, Andrup L, Swiecicka I, Mahillon J. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiol. 2005;151(7):2121-4. [DOI:10.1099/mic.0.28069-0] [PMID]
32. Fricker M, Messelhäußer U, Busch U, Scherer S, Ehling-Schulz M. Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl Environ Microbiol. 2007;73(6):1892-8. [DOI:10.1128/AEM.02219-06] [PMID] [PMCID]
33. Tallent SM, Hait JM, Bennett RW. Analysis of Bacillus cereus toxicity using PCR, ELISA and a lateral flow device J Appl Microbiol. 2015;118(4):1068-75. [DOI:10.1111/jam.12766] [PMID]
34. Berthold-Pluta A, Pluta A, Garbowska M, Stefańska I. Prevalence and Toxicity Characterization of Bacillus cereus in Food Products from Poland. Foods. 2019;8(7):269. [DOI:10.3390/foods8070269] [PMID] [PMCID]
35. Hwang JY, Park JH. Characteristics of enterotoxin distribution, hemolysis, lecithinase, and starch hydrolysis of Bacillus cereus isolated from infant formulas and ready-to-eat foods. J Dairy Sci. 2015;98(3):1652-60. [DOI:10.3168/jds.2014-9042] [PMID]
36. Rather MA, Aulakh RS, Gill JPS, Rao TS, Hassan MN. Direct Detection of Bacillus cereus and its Enterotoxigenic Genes in Meat and Meat Products by Polymerase Chain Reaction. J Adv Vet Res. 2011;1(3):99-104.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc