year 16, Issue 6 (November - December 2022)                   Iran J Med Microbiol 2022, 16(6): 573-580 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kashkouri N, Tabarsi P, Pourabdollah Toutkaboni M, Kazempour Dizaji M, Bahrami N, Narimani A, et al . The Prevalence of Carbapenemase Genes in Carbapenem-resistant Gram-negative Bacilli, Masih Daneshvari Hospital, Tehran, Iran, 2019-2020. Iran J Med Microbiol 2022; 16 (6) :573-580
1- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
2- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- Biostatistics Department, Mycobacteriology Research Center, National Research Institute of Tuberculosis and lung Diseases, Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
5- Department of Cell and Molecular Biology, School of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
6- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran ,
Abstract:   (1039 Views)

Background and Aim: Carbapenem-resistant Enterobacteriaceae (CRE) are rapidly growing, which makes it vital to detect antibacterial activity. However, the carbapenem family does not have an automated antimicrobial susceptibility testing card. So the aim of this study was to identify the prevalence of carbapenemase-producing strains of Gram-negative bacteria and determine their antibiotic susceptibility pattern in Tehran, Iran.
Materials and Methods: In this cross-sectional study, between 2019 and 2020, 1600 samples were taken from the Masih Daneshvari hospital's laboratory in Iran. Utilizing standard biochemical methods, all isolated bacteria were identified. The common Kirby-Bauer Disc diffusion method was used for antimicrobial susceptibility testing. A real-time polymerase chain reaction was used to evaluate the molecular detection of genes producing carbapenemase.
Results: Of 1502 (94.7) Gram-negative bacilli, 37.3% isolates were Pseudomonas aeruginosa, 30.6% Acinetobacter baumannii, 16.5% Klebsiella, 9.3% Escherichia coli, 0.6% Pseudomonas multophila, 0.4% Neisseria1105 (73.5%) isolates were carbapenem-sensitive, while the remaining 397 (26.5%) isolates were carbapenem-resistant. Molecular testing of this sample showed that 80% of tested isolates had resistance genes to at least one antibiotic resistance gene. The following carbapenemase genes were most frequently detected among resistant strains: blaimp (35%), blavim (20%), blakpc (15%), blaoxa -48 (10%), blandm (10%), and blages (10%).
Conclusion: From this study authors can conclude that carbapenemase-producing Enterobacteriaceae is increasing in Iran and the use of phenotypic methods for detection of CPEs showed good sensitivity. Before prescribing antibiotics to patients, this test should be performed.

Full-Text [PDF 626 kb]   (325 Downloads) |   |   Full-Text (HTML)  (336 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2022/07/7 | Accepted: 2022/08/18 | ePublished: 2022/09/9

1. Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front Med (Lausanne). 2019;6:74. [DOI:10.3389/fmed.2019.00074] [PMID] [PMCID]
2. Sheu C-C, Chang Y-T, Lin S-Y, Chen Y-H, Hsueh P-R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Frontiers in Microbiology. 2019;10. [DOI:10.3389/fmicb.2019.00080] [PMID] [PMCID]
3. Jalalvand K, Shayanfar N, Shahcheraghi F, Amini E, Mohammadpour M, Babaheidarian P. Evaluation of Phenotypic and Genotypic Characteristics of Carbapnemases-producing Enterobacteriaceae and Its Prevalence in a Referral Hospital in Tehran City. Iranian Journal of Pathology. 2020;15(2):86-95. [DOI:10.30699/ijp.2020.111181.2188] [PMID] [PMCID]
4. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. [DOI:10.7573/dic.212527] [PMID] [PMCID]
5. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
6. Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24(1):350-9. [DOI:10.1016/j.drudis.2018.07.003] [PMID]
7. Hernández-González IL, Castillo-Ramírez S. Antibiotic-resistant Acinetobacter baumannii is a One Health problem. The Lancet Microbe. 2020;1(7):e279. [DOI:10.1016/S2666-5247(20)30167-1]
8. Horcajada JP, Montero M, Oliver A, Sorli L, Luque S, Gomez-Zorrilla S, et al. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin Microbiol Rev. 2019;32(4). [DOI:10.1128/CMR.00031-19] [PMID] [PMCID]
9. Blanco N, Harris AD, Rock C, Johnson JK, Pineles L, Bonomo RA, et al. Risk Factors and Outcomes Associated with Multidrug-Resistant Acinetobacter baumannii upon Intensive Care Unit Admission. Antimicrob Agents Chemother. 2018;62(1). [DOI:10.1128/AAC.01631-17] [PMID] [PMCID]
10. Sileem AE, Said AM, Meleha MS. Acinetobacter baumannii in ICU patients: A prospective study highlighting their incidence, antibiotic sensitivity pattern and impact on ICU stay and mortality. Egyptian Journal of Chest Diseases and Tuberculosis. 2017;66(4):693-8. [DOI:10.1016/j.ejcdt.2017.01.003]
11. Pot M, Reynaud Y, Couvin D, Ducat C, Ferdinand S, Gravey F, et al. Wide Distribution and Specific Resistance Pattern to Third-Generation Cephalosporins of Enterobacter cloacae Complex Members in Humans and in the Environment in Guadeloupe (French West Indies). Frontiers in Microbiology. 2021;12. [DOI:10.3389/fmicb.2021.628058] [PMID] [PMCID]
12. Rohde AM, Zweigner J, Wiese-Posselt M, Schwab F, Behnke M, Kola A, et al. Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae - a prospective multicentre cohort study in six German university hospitals. Antimicrob Resist Infect Control. 2018;7:159. [DOI:10.1186/s13756-018-0452-8] [PMID] [PMCID]
13. Shahandeh Z, Sadighian F, Kalantrai N. Prevalence Escherichia coli, Klebsiella and Enterobacter Species and AmpC-producing Enterobacteriaceae in Clinical Specimens of Hospitals Affiliated to Babol University of Medical Sciences, Iran using Phenotypic and Molecular Methods. Iranian Journal of Medical Microbiology. 2022;16(3):212-20. [DOI:10.30699/ijmm.16.3.212]
14. Kalantari H, Hajizade A, Issazadeh K, Faezi Ghasemi M. A Study on the Prevalence of Vancomycin-resistant Enterococci and Their Antibiotic Resistance Pattern in Recreational Waters in Guilan Province, Iran. Iranian Journal of Medical Microbiology. 2022;16(3):251-8. [DOI:10.30699/ijmm.16.3.251]
15. Breurec S, Bouchiat C, Sire J-M, Moquet O, Bercion R, Cisse MF, et al. High third-generation cephalosporin resistant Enterobacteriaceae prevalence rate among neonatal infections in Dakar, Senegal. BMC Infectious Diseases. 2016;16(1):587. [DOI:10.1186/s12879-016-1935-y] [PMID] [PMCID]
16. Muller AE, Huttner B, Huttner A. Therapeutic Drug Monitoring of Beta-Lactams and Other Antibiotics in the Intensive Care Unit: Which Agents, Which Patients and Which Infections? Drugs. 2018;78(4):439-51. [DOI:10.1007/s40265-018-0880-z] [PMID]
17. Kim SW, Lee JS, Park SB, Lee AR, Jung JW, Chun JH, et al. The Importance of Porins and beta-Lactamase in Outer Membrane Vesicles on the Hydrolysis of beta-Lactam Antibiotics. Int J Mol Sci. 2020;21(8). [DOI:10.3390/ijms21082822] [PMID] [PMCID]
18. Tsivkovski R, Totrov M, Lomovskaya O. Biochemical Characterization of QPX7728, a New Ultrabroad-Spectrum Beta-Lactamase Inhibitor of Serine and Metallo-Beta-Lactamases. Antimicrob Agents Chemother. 2020;64(6). [DOI:10.1128/AAC.00130-20] [PMID] [PMCID]
19. Seyfi B, Hossainpour H, Kooti S, Azizi Jalilian F. Identification of Carbapenem Resistance Genes in Escherichia coli Isolated from Blattella germanica by Dot Blot Assay in Hamadan Hospitals, Iran - 2018. Iranian Journal of Medical Microbiology. 2022;16(4):357-62. [DOI:10.30699/ijmm.16.4.357]
20. Borman AM, Muller J, Walsh-Quantick J, Szekely A, Patterson Z, Palmer MD, et al. MIC distributions for amphotericin B, fluconazole, itraconazole, voriconazole, flucytosine and anidulafungin and 35 uncommon pathogenic yeast species from the UK determined using the CLSI broth microdilution method. Journal of Antimicrobial Chemotherapy. 2020;75(5):1194-205. [DOI:10.1093/jac/dkz568] [PMID]
21. Hossein H, Kamran M, Maryam N, Fatemeh N, Abdolreza M, Naghmeh B. Bevacizumab Inhibits Angiogenic Cytokines in Head and Neck Squamous Cell Carcinoma: From Gene to the Protein. International Journal of Hematology-Oncology and Stem Cell Research. 2018;12(2).
22. Karimi S, Bahrami N, Sharifi K, Daustany M, Baghbani-Arani F, Kazempour M, et al. Investigating gene expression level of MUC1 and CEA in pleural fluid of NSCLC lung cancer patients with real-time RT-PCR method. Minerva Pneumol. 2017;56(1):18-24. [DOI:10.23736/S0026-4954.16.01772-7]
23. Farzanegan B, Bahrami N, Birjandi B, Khosravi A, Nasab AF, Fathi M, et al. Down-Expression of miRNA-98 and Over-Expression of miRNA-9 Can Result in Inadequate Immune System Response against Lung Cancer. Biointerface Res Appl Chem. 2021;11:13893-902. [DOI:10.33263/BRIAC116.1389313902]
24. Ghadimi K, Bahrami N, Fathi M, Farzanegan B, Naji T, Emami M, et al. Diagnostic value of LunX mRNA and CEA mRNA expression in pleural fluid of patients with non-small cell lung cancer. Minerva Pneumologica. 2017;56(2):90-5. [DOI:10.23736/S0026-4954.16.01773-9]
25. Wright GD. Mechanisms of resistance to antibiotics. Curr Opin Chem Biol. 2003;7(5):563-9. [DOI:10.1016/j.cbpa.2003.08.004] [PMID]
26. Corona F, Martinez JL. Phenotypic Resistance to Antibiotics. Antibiotics (Basel). 2013;2(2):237-55. [DOI:10.3390/antibiotics2020237] [PMID] [PMCID]
27. Nordmann P. Carbapenemase-producing Enterobacteriaceae: overview of a major public health challenge. Med Mal Infect. 2014;44(2):51-6. [DOI:10.1016/j.medmal.2013.11.007] [PMID]
28. Yuan W, Zhang Y, Riaz L, Yang Q, Du B, Wang R. Multiple antibiotic resistance and DNA methylation in Enterobacteriaceae isolates from different environments. J Hazard Mater. 2021;402:123822. [DOI:10.1016/j.jhazmat.2020.123822] [PMID]
29. Perovic O, Ismail H, Quan V, Bamford C, Nana T, Chibabhai V, et al. Carbapenem-resistant Enterobacteriaceae in patients with bacteraemia at tertiary hospitals in South Africa, 2015 to 2018. Eur J Clin Microbiol Infect Dis. 2020;39(7):1287-94. [DOI:10.1007/s10096-020-03845-4] [PMID]
30. Oliveira RA, Ng KM, Correia MB, Cabral V, Shi H, Sonnenburg JL, et al. Klebsiella michiganensis transmission enhances resistance to Enterobacteriaceae gut invasion by nutrition competition. Nat Microbiol. 2020;5(4):630-41. [DOI:10.1038/s41564-019-0658-4] [PMID]
31. Shahcheraghi F, Aslani MM, Mahmoudi H, Karimitabar Z, Solgi H, Bahador A, et al. Molecular study of carbapenemase genes in clinical isolates of Enterobacteriaceae resistant to carbapenems and determining their clonal relationship using pulsed-field gel electrophoresis. J Med Microbiol. 2017;66(5):570-6. [DOI:10.1099/jmm.0.000467] [PMID]
32. Solgi H, Badmasti F, Aminzadeh Z, Giske CG, Pourahmad M, Vaziri F, et al. Molecular characterization of intestinal carriage of carbapenem-resistant Enterobacteriaceae among inpatients at two Iranian university hospitals: first report of co-production of bla NDM-7 and bla OXA-48. Eur J Clin Microbiol Infect Dis. 2017;36(11):2127-35. [DOI:10.1007/s10096-017-3035-3] [PMID]
33. Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. The Lancet Infectious Diseases. 2010;10(9):597-602. [DOI:10.1016/S1473-3099(10)70143-2]
34. Rouhi S, Ramazanzadeh R. Prevalence of blaOxacillinase-23 and blaOxacillinase-24/40 carbapenemase genes in Pseudomonas aeruginosa isolated from patients with nosocomial and non-nosocomial infections in West of Iran. Iranian Journal of Pathology. 2018;13(3):348-56.
35. Lashtoo Aghaee B, Alikhani MY, van Leeuwen WB, Mojtahedi A, Kazemi S, Karami P. Conventional Treatment of Burn Wound Infections versus Phage Therapy. Iranian Journal of Medical Microbiology. 2022;16(3):186-96. [DOI:10.30699/ijmm.16.3.186]
36. Guh AY, Bulens SN, Mu Y, Jacob JT, Reno J, Scott J, et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae in 7 US Communities, 2012-2013. JAMA. 2015;314(14):1479-87. [DOI:10.1001/jama.2015.12480] [PMID] [PMCID]
37. Torres-Gonzalez P, Cervera-Hernandez ME, Niembro-Ortega MD, Leal-Vega F, Cruz-Hervert LP, Garcia-Garcia L, et al. Factors Associated to Prevalence and Incidence of Carbapenem-Resistant Enterobacteriaceae Fecal Carriage: A Cohort Study in a Mexican Tertiary Care Hospital. PLoS One. 2015;10(10):e0139883. [DOI:10.1371/journal.pone.0139883] [PMID] [PMCID]
38. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis. 2011;53(1):60-7. [DOI:10.1093/cid/cir202] [PMID]
39. Iovleva A, Doi Y. Carbapenem-Resistant Enterobacteriaceae. Clin Lab Med. 2017;37(2):303-15. [DOI:10.1016/j.cll.2017.01.005] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc