year 17, Issue 1 (January - February (Inpress) 2023)                   Iran J Med Microbiol 2023, 17(1): 5-5 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mireshghi N, Jafari Z, Shojaei Sadi B. Molecular study of Shigella dysenteriae Aminoglycoside Resistance Genes Isolated from Children and its Expression Under the Influence of Curcumin Nanoparticle. Iran J Med Microbiol 2023; 17 (1) :5-5
URL: http://ijmm.ir/article-1-1776-en.html
1- Department of Microbiology, School of Basic Sciences, Arak Branch, Islamic Azad University, Arak, Iran
2- Young researchers and elite club, Arak Branch, Islamic Azad University, Arak, Iran , jafarizohreh264@gmail.com
Abstract:   (367 Views)

Background and Aim: Shigella is the causative agent of shigellosis in the world. Antibiotic treatment is important in this bacterium, but recently Shigella species containing the aph, aadE, aacA-aphD genes have shown resistance to aminoglycosides and have hampered the treatment process. Therefore, the aim of this study is a molecular investigation of Shigella dysenteriae aminoglycoside resistance genes isolated from children and its expression under the influence of curcumin nanoparticles.
Materials and Methods: In this study, 60 diarrhea samples collected from Tehran hospitals in 2022 were used. Shigella dysenteriae isolates were identified by biochemical and microbial tests. The presence of aadE, aacA-aphD, and aph genes was confirmed by the Multiplex-PCR method. Then, real-time PCR was used to investigate the expression of aadE gene in the presence of curcumin nanoparticles.
Results: From the 60 diarrhea samples examined, 12 strains (40%) of Shigella dysentery were identified by biochemical tests. Ten isolates (83.3%) carried the aadE gene, six isolates carried the aacA_aphD gene, and one isolate carried the aph gene. The Sub MIC value of curcumin nanoparticles on aadE gene expression is 128 µg/mL, and the Fold Change for this gene is -1.03.
Conclusion: Considering the presence of aadE gene in 83.3% of Shigella dysenteriae isolates, it is important to investigate the presence of this gene in providing a suitable treatment model for patients infected with this bacterium, as well as the expression of aadE gene as the most common one. The expression of the aminoglycoside resistance gene was reduced to a relative amount in the presence of curcumin nanoparticles. Therefore, curcumin nanoparticles can be a suitable alternative for the treatment of strains carrying aminoglycoside resistance genes.

     
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2022/06/7 | Accepted: 2022/08/12 | ePublished: 2023/01/20

References
1. Jomehzadeh N, Afzali M, Ahmadi K, Salmanzadeh S, Mehr F. Antimicrobial resistance patterns and prevalence of integrons in Shigella species isolated from children with diarrhea in southwest Iran. Asian Pac J Trop Med. 2021;14(2):78-82. [DOI:10.4103/1995-7645.281529]
2. Amini K, Konkori M. Identification of Broad-Spectrum Beta-lactamase CTX-M-2, CTX-M-8, and Ampc-dependent CMY Genes in Shigella sonnei Isolated from Pediatric Diarrhea Specimens by Multiplex-PCR and Antibiotic Resistance Pattern Determination. Iran J Med Microbiol. 2020;14(5):501-11. [DOI:10.30699/ijmm.14.5.501]
3. Zhi S, Parsons BD, Szelewicki J, Yuen YTK, Fach P, Delannoy S, et al. Identification of Shiga-Toxin-Producing Shigella Infections in Travel and Non-Travel Related Cases in Alberta, Canada. Toxins [Internet]. 2021; 13(11). [DOI:10.3390/toxins13110755] [PMID] [PMCID]
4. Ranjbar R, Soltan Dallal MM, Talebi M, Pourshafie MR. Increased isolation and characterization of Shigella sonnei obtained from hospitalized children in Tehran, Iran. J Health Popul Nutr. 2008;26(4):426-30. [DOI:10.3329/jhpn.v26i4.1884] [PMID] [PMCID]
5. Ke X, Gu B, Pan S, Tong M. Epidemiology and molecular mechanism of integron-mediated antibiotic resistance in Shigella. Arch Microbiol. 2011;193(11):767. [DOI:10.1007/s00203-011-0744-3] [PMID]
6. Kahsay AG, Muthupandian S. A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001-2014. BMC Res Notes. 2016;9(1):422. [DOI:10.1186/s13104-016-2236-7] [PMID] [PMCID]
7. Afshari N, Bakhshi B, Mahmoudi aznaveh A, Fallah F, Rahbar M, Rafiei Tabatabaei S. Investigation of prevalence of Shigella sonnei in children with diarrhea admitted to two hospital Emam Khomeini and Milad in Tehran in 1391 with Antimicrobial susceptibility of isolates. Iran J Med Microbiol. 2016;10(2):16-22.
8. Tran Van Nhieu G, Sansonetti PJ. Mechanism of Shigella entry into epithelial cells. Curr Opin Microbiol. 1999;2(1):51-5. [DOI:10.1016/S1369-5274(99)80009-5] [PMID]
9. Nasrollahi Boroujeni F, Deldar AA. The Study of the Stable Expression of IpaB, the Virulence Factor in Shigella Sonnei, in Terms of Simultaneous Expression of Chaperone IpgC. Iran J Med Microbiol. 2018;12(4):260-8. [DOI:10.30699/ijmm.12.4.260]
10. Muthuirulandi Sethuvel DP, Veeraraghavan B, Vasudevan K, Devanga Ragupathi NK, Murugan D, Walia K, et al. Complete genome analysis of clinical Shigella strains reveals plasmid pSS1653 with resistance determinants: a triumph of hybrid approach. Gut Pathog. 2019;11(1):55. [DOI:10.1186/s13099-019-0334-5] [PMID] [PMCID]
11. Ranjbar R, Farahani A. Shigella: Antibiotic Resistance Mechanisms And New Horizons For Treatment. Infect Drug Resist. 2019;12:3137-67. [DOI:10.2147/IDR.S219755] [PMID] [PMCID]
12. Soleimani N. Molecular Biology of Aminoglycoside and Relationship of Aminoglycoside Modifying Enzymes with Altering Resistance. Alborz Univ Med J. 2017;6(4):227-40. [DOI:10.29252/aums.6.4.227]
13. Silva PR, Palma JM, Souza NR, de Moura HM, Perecmanis S, et al. Isolation and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli found in chilled chicken carcasses in the Federal District Region and surrounding areas. Semina: Ciências Agrárias. 2019; 40(5Supl1):2247-60. [DOI:10.5433/1679-0359.2019v40n5Supl1p2247]
14. Garneau Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. Med Chem Comm. 2016;7(1):11-27. [DOI:10.1039/C5MD00344J] [PMID] [PMCID]
15. Chopra H, Dey PS, Das D, Bhattacharya T, Shah M, Mubin S, et al. Curcumin Nanoparticles as Promising Therapeutic Agents for Drug Targets. Molecules [Internet]. 2021; 26(16):[4998 p.]. [DOI:10.3390/molecules26164998] [PMID] [PMCID]
16. Gopal J, Muthu M, Chun SC. One-step, ultrasonication-mobilized, solvent-free extraction/synthesis of nanocurcumin from turmeric. RSC Adv. 2015;5(60):48391-8. [DOI:10.1039/C5RA06002H]
17. Rai M, Ingle AP, Pandit R, Paralikar P, Anasane N, Santos CAD. Curcumin and curcumin-loaded nanoparticles: antipathogenic and antiparasitic activities. Expert Rev Anti Infect Ther. 2020;18(4):367-79. [DOI:10.1080/14787210.2020.1730815] [PMID]
18. Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, et al. Antimicrobial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res. 2020;34(8):1926-46. [DOI:10.1002/ptr.6658] [PMID]
19. Kareem SM, Mahmood SS, Hindi NK. Effects of Curcumin and Silymarin on the Shigella dysenteriae and Campylobacter jejuni In vitro. J Gastrointest Cancer. 2020;51(3):824-8. [DOI:10.1007/s12029-019-00301-1] [PMID]
20. Werner G, Hildebrandt B, Witte W. Aminoglycoside-Streptothricin Resistance Gene Cluster aadE-sat4-aphA-3 Disseminated among Multiresistant Isolates of Enterococcus faecium. Antimicrob Agents Chemother. 2001;45(11):3267-9. [DOI:10.1128/AAC.45.11.3267-3269.2001] [PMID] [PMCID]
21. Udou T. Dissemination of nosocomial multiple-aminoglycoside-resistant Staphylococcus aureus caused by horizontal transfer of the resistance determinant (aacA/aphD) and clonal spread of resistant strains. Am J Infect Control. 2004;32(4):215-9. [DOI:10.1016/j.ajic.2003.11.002] [PMID]
22. Gião J, Leão C, Albuquerque T, Clemente L, Amaro A. Antimicrobial Susceptibility of Enterococcus Isolates from Cattle and Pigs in Portugal: Linezolid Resistance Genes optrA and poxtA. Antibiotics [Internet]. 2022; 11(5). [DOI:10.3390/antibiotics11050615] [PMID] [PMCID]
23. Bhawana, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin Nanoparticles: Preparation, Characterization, and Antimicrobial Study. J Agric Food Chem. 2011;59(5):2056-61. [DOI:10.1021/jf104402t] [PMID]
24. Alizadeh Sarvandani S, Amini K, Saffarian P. Evaluation of antimicrobial activity of Curcumin nanoparticles on the gene expression of the enterococcal surface protein, Esp, involved in biofilm formation of Enterococcus Faecalis. Razi J Med Sci. 2019;26(9):39-46.
25. Panahi Y, Monnazah MA, Vafaei G. Study of the Use of Dimethyl Sulfoxide (Dmso) As A Solvent in the Administration of Antiepileptic Drugs. Stud Med Sci. 2020;31(4):316-24.
26. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46(D1):D8-d13.
27. Vaziri F, Peerayeh SN, Nejad QB, Farhadian A. The prevalence of aminoglycoside-modifying enzyme genes (aac (6′)-I, aac (6′)-II, ant (2″)-I, aph (3′)-VI) in Pseudomonas aeruginosa. Clin Sci. 2011;66(9):1519-22.
28. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR Assay for Simultaneous Detection of Nine Clinically Relevant Antibiotic Resistance Genes in Staphylococcus aureus. J Clin Microbiol. 2003;41(9):4089-94. [DOI:10.1128/JCM.41.9.4089-4094.2003] [PMID] [PMCID]
29. Moniri R, Farahani RK, Shajari G, Shirazi MN, Ghasemi A. Molecular epidemiology of aminoglycosides resistance in acinetobacter spp. With emergence of multidrug-resistant strains. Iran J Public Health. 2010;39(2):63-8.
30. Zhang Z, Liao L, Moore J, Wu T, Wang Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009;113(1):160-5. [DOI:10.1016/j.foodchem.2008.07.061]
31. De R, Kundu P, Swarnakar S, Ramamurthy T, Chowdhury A, Nair GB, et al. Antimicrobial Activity of Curcumin against Helicobacter pylori Isolates from India and during Infections in Mice. Antimicrob Agents Chemother. 2009;53(4):1592-7. [DOI:10.1128/AAC.01242-08] [PMID] [PMCID]
32. Shariati A, Asadian E, Fallah F, Azimi T, Hashemi A, Yasbolaghi Sharahi J, et al. Evaluation of Nano-curcumin effects on expression levels of virulence genes and biofilm production of multidrug-resistant Pseudomonas aeruginosa isolated from burn wound infection in Tehran, Iran. Infect Drug Resist. 2019;12:2223-35. [DOI:10.2147/IDR.S213200] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc