year 16, Issue 6 (November - December 2022)                   Iran J Med Microbiol 2022, 16(6): 594-600 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dirbazian A, Soleimani M, Mousavi S H, Aminianfar M, Mirjani R, Khoshfetrat M et al . Molecular Detection of Infectious Endocarditis (Coxiella burnetii) Bacteria from Selected Military Hospitals. Iran J Med Microbiol 2022; 16 (6) :594-600
1- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
2- Department of Microbiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran ,
3- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
4- Department of Infectious Disease, School of Aerospace and Subaquatic Medicine, Beasat Hospital, AJA University of Medical Sciences, Tehran, Iran
5- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
6- Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (1895 Views)

Background and Aim: Coxiella burnetii is a mandatory gram-negative and intracellular bacterium. The most common pathogens are Query Fever in humans and Coxiellosis in animals. Due to the variety of ways of infection and the lack of accurate, comprehensive, and reliable research, and the lack of statistics on the percentage of infection with C. burnetiii and the high resistance of this bacterium in the environment, it is important to investigate the presence of nosocomial infections with this bacterium. Therefore, this study aimed to molecularly detect C. burnetiii bacteria that cause infective endocarditis in military hospitals.
Materials and Methods: 100 negatively cultured endocarditis specimens were collected for this purpose, and DNA was extracted from C. burnetii with an extraction kit. Also, a PCR reaction was performed on the genome of negative control samples to evaluate the specificity of primers and determine the method's specificity. After ligation steps, JM107 E. coli susceptible to calcium chloride was used to accept the plasmid containing the gene.
Results: In quantitative DNA analysis, its amount was calculated between 1.69 and 1.8. The last dilution of the PUC18 plasmid for C. burnetii with an initial concentration of 700 ng / µl, which formed a detectable band on the gel, was calculated to be 7-10, and the minimum number of detectable copies in a 25 μL PCR reaction equal to 22 copies.
Conclusion: Although C. burnetii was not detected in any of the blood samples in this study. However, C. burnetii has a broad and varied host spectrum in the Epizootic and Enzootic foci.

Full-Text [PDF 595 kb]   (605 Downloads) |   |   Full-Text (HTML)  (611 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2022/02/27 | Accepted: 2022/05/15 | ePublished: 2022/09/9

1. Tapia T, Stenos J, Flores R, Duery O, Iglesias R, Olivares MF, et al. Evidence of Q Fever and Rickettsial Disease in Chile. Trop Med Infect Dis. 2020;5(2):99. [DOI:10.3390/tropicalmed5020099] [PMID] [PMCID]
2. Ghalyanchi Langeroudi A, Babkhani N, Zolfaghari MR, Majidzadeh Arbadili K, Morovvati A, Soleimani M. Detection of Coxeilla brunetii in bulk tank milk samples from dairy bovine farms using nested-PCR in Qom, Iran, 2011. Iran J Vet Med. 2013;7(3):207-11.
3. Hansen MS, Rodolakis A, Cochonneau D, Agger JF, Christoffersen AB, Jensen TK, et al. Coxiella burnetii associated placental lesions and infection level in parturient cows. Vet J. 2011;190(2):e135-e9. [DOI:10.1016/j.tvjl.2010.12.021] [PMID]
4. Agerholm JS. Coxiella burnetii associated reproductive disorders in domestic animals--a critical review. Acta Vet Scand. 2013;55(1):13. [DOI:10.1186/1751-0147-55-13] [PMID] [PMCID]
5. Maurin M, Raoult D. Q fever. Clin Microbiol Rev. 1999;12(4):518-53. [DOI:10.1128/CMR.12.4.518] [PMID] [PMCID]
6. Wildman MJ, Smith EG, Groves J, Beattie JM, Caul EO, Ayres JG. Chronic fatigue following infection by Coxiella burnetii (Q fever): ten-year follow-up of the 1989 UK outbreak cohort. QJM. 2002;95(8):527-38. [DOI:10.1093/qjmed/95.8.527] [PMID]
7. Sathua K, Flora SJS. Bacterial biological warfare agents. Handbook on Biological Warfare Preparedness: Elsevier; 2020. p. 13-31. [DOI:10.1016/B978-0-12-812026-2.00002-5]
8. Muskens J, van Engelen E, van Maanen C, Bartels C, Lam TJ. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Vet Rec. 2011;168(3):79. [DOI:10.1136/vr.c6106] [PMID]
9. Maurin M, Raoult Df. Q fever. Clinical microbiology reviews. 1999;12(4):518-53. [DOI:10.1128/CMR.12.4.518] [PMID] [PMCID]
10. Million M, Raoult D. Recent advances in the study of Q fever epidemiology, diagnosis and management. J Infect. 2015;71 Suppl 1:S2-9. [DOI:10.1016/j.jinf.2015.04.024] [PMID]
11. Sathua K, Flora S. Bacterial biological warfare agents. Handbook on Biological Warfare Preparedness: Elsevier; 2020. p. 13-31. [DOI:10.1016/B978-0-12-812026-2.00002-5]
12. Bosnjak E, Hvass AM, Villumsen S, Nielsen H. Emerging evidence for Q fever in humans in Denmark: role of contact with dairy cattle. Clin Microbiol Infect. 2010;16(8):1285-8. [DOI:10.1111/j.1469-0691.2009.03062.x] [PMID]
13. Muskens J, Van Engelen E, Van Maanen C, Bartels C, Lam T. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Veterinary Record. 2011;168(3):79-. [DOI:10.1136/vr.c6106] [PMID]
14. Gronvall GK. Biodefense in the 21st century. American Association for the Advancement of Science; 2017.
15. Cenciarelli O, Pietropaoli S, Gabbarini V, Carestia M, D'Amico F, Malizia A, et al. Use of non-pathogenic biological agents as biological warfare simulants for the development of a stand-off detection system. J Microb Biochem Technol. 2014;6(07):375-80. [DOI:10.4172/1948-5948.1000172]
16. Mousavi SM, Babakhani S, Moradi L, Karami S, Shahbandeh M, Mirshekar M, et al. Bacteriophage as a novel therapeutic weapon for killing colistin-resistant multi-drug-resistant and extensively drug-resistant gram-negative bacteria. Curr Microbiol. 2021;78(12):4023-36. [DOI:10.1007/s00284-021-02662-y] [PMID] [PMCID]
17. Melenotte C, Protopopescu C, Million M, Edouard S, Carrieri MP, Eldin C, et al. Clinical Features and Complications of Coxiella burnetii Infections From the French National Reference Center for Q Fever. JAMA Netw Open. 2018;1(4):e181580. [DOI:10.1001/jamanetworkopen.2018.1580] [PMID] [PMCID]
18. Wegdam-Blans MC, Vainas T, van Sambeek MR, Cuypers PW, Tjhie HT, van Straten AH, et al. Vascular complications of Q-fever infections. Eur J Vasc Endovasc Surg. 2011;42(3):384-92. [DOI:10.1016/j.ejvs.2011.04.013] [PMID]
19. Bae M, Lee HJ, Park JH, Bae S, Jung J, Kim MJ, et al. Molecular diagnosis of Coxiella burnetii in culture negative endocarditis and vascular infection in South Korea. Ann Med. 2021;53(1):2256-65. [DOI:10.1080/07853890.2021.2005821] [PMID] [PMCID]
20. Wood C, Muleme M, Tan T, Bosward K, Gibson J, Alawneh J, et al. Validation of an indirect immunofluorescence assay (IFA) for the detection of IgG antibodies against Coxiella burnetii in bovine serum. Prev Vet Med. 2019;169:104698. [DOI:10.1016/j.prevetmed.2019.104698] [PMID]
21. Fenollar F, Fournier PE, Raoult D. Molecular detection of Coxiella burnetii in the sera of patients with Q fever endocarditis or vascular infection. J Clin Microbiol. 2004;42(11):4919-24. [DOI:10.1128/JCM.42.11.4919-4924.2004] [PMID] [PMCID]
22. Shahbandeh M, Taati Moghadam M, Mirnejad R, Mirkalantari S, Mirzaei M. The Efficacy of AgNO3 Nanoparticles Alone and Conjugated with Imipenem for Combating Extensively Drug-Resistant Pseudomonas aeruginosa. Int J Nanomedicine. 2020;15:6905-16. [DOI:10.2147/IJN.S260520] [PMID] [PMCID]
23. Shahbandeh M, Eghdami A, Moosazadeh Moghaddam M, Jalali Nadoushan M, Salimi A, Fasihi-Ramandi M, et al. Conjugation of imipenem to silver nanoparticles for enhancement of its antibacterial activity against multidrug-resistant isolates of Pseudomonas aeruginosa. J Biosci. 2021;46(1):1-19. [DOI:10.1007/s12038-021-00143-9]
24. Soleimani M, Morovvati A, Hosseini SZ, Zolfaghari MR. Design of an improved multiplex PCR method for diagnosis of enterohaemoraghic E.coli and enteropathogic E.coli pathotypes. Gastroenterol Hepatol Bed Bench. 2012;5(2):106-11.
25. Berri M, Souriau A, Crosby M, Crochet D, Lechopier P, Rodolakis A. Relationships between the shedding of Coxiella burnetii, clinical signs and serological responses of 34 sheep. Vet Rec. 2001;148(16):502-5. [DOI:10.1136/vr.148.16.502] [PMID]
26. Howe D, Heinzen RA. Coxiella burnetii inhabits a cholesterol-rich vacuole and influences cellular cholesterol metabolism. Cell Microbiol. 2006;8(3):496-507. [DOI:10.1111/j.1462-5822.2005.00641.x] [PMID]
27. Cohen SN, Chang AC, Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972;69(8):2110-4. [DOI:10.1073/pnas.69.8.2110] [PMID] [PMCID]
28. Shabbir MZ, Akram S, Hassan ZU, Hanif K, Rabbani M, Muhammad J, et al. Evidence of Coxiella burnetii in Punjab province, Pakistan. Acta Trop. 2016;163:61-9. [DOI:10.1016/j.actatropica.2016.07.017] [PMID]
29. Esmaeili S, Mohabati Mobarez A, Khalili M, Mostafavi E, Moradnejad P. Genetic evidence of Coxiella burnetii infection in acute febrile illnesses in Iran. PLoS Negl Trop Dis. 2019;13(2):e0007181. [DOI:10.1371/journal.pntd.0007181] [PMID] [PMCID]
30. Kirkan Ş, Kaya O, Tekbiyik S, Parin U. Detection of Coxiella burnetii in cattle by PCR. Turkish Journal of Veterinary and Animal Sciences. 2008;32(3):215-20.
31. Zabihi R, Majidzadeh K, Mohseni AH, Soleimani M. Review on the Laboratory diagnosis of Q-Fever. Ann Med Health Sci Res. 2013;11(4).
32. Knobel DL, Maina AN, Cutler SJ, Ogola E, Feikin DR, Junghae M, et al. Coxiella burnetii in humans, domestic ruminants, and ticks in rural western Kenya. Am J Trop Med Hyg. 2013;88(3):513-8. [DOI:10.4269/ajtmh.12-0169] [PMID] [PMCID]
33. Abbass H, Selim SAK, Sobhy MM, El-Mokhtar MA, Elhariri M, Abd-Elhafeez HH. High prevalence of Coxiella burnetii infection in humans and livestock in Assiut, Egypt: A serological and molecular survey. Vet World. 2020;13(12):2578-86. [DOI:10.14202/vetworld.2020.2578-2586] [PMID] [PMCID]
34. Abbasi S, Farzan R, Momtaz H. Molecular detection of Coxiella burnetii in goat bulk milk samples in some provinces of Iran. African Journal of Biotechnology. 2011;10(80):18513-5. [DOI:10.5897/AJB11.2508]
35. Astobiza I, Ruiz-Fons F, Pinero A, Barandika JF, Hurtado A, Garcia-Perez AL. Estimation of Coxiella burnetii prevalence in dairy cattle in intensive systems by serological and molecular analyses of bulk-tank milk samples. J Dairy Sci. 2012;95(4):1632-8. [DOI:10.3168/jds.2011-4721] [PMID]
36. Doosti A, Ahmadi R, Arshi A. PCR detection of leptospirosis in Iranian camels. Bulgarian Journal of Veterinary Medicine. 2012;15(3):178-83.
37. Gyuranecz M, Denes B, Hornok S, Kovacs P, Horvath G, Jurkovich V, et al. Prevalence of Coxiella burnetii in Hungary: screening of dairy cows, sheep, commercial milk samples, and ticks. Vector Borne Zoonotic Dis. 2012;12(8):650-3. [DOI:10.1089/vbz.2011.0953] [PMID]
38. Literak I, Kroupa L. Herd-level Coxiella burnetii seroprevalence was not associated with herd-level breeding performance in Czech dairy herds. Preventive Vet Med. 1998;33(1-4):261-5. [DOI:10.1016/S0167-5877(97)00034-2]
39. Hirai K, To H. Advances in the understanding of Coxiella burnetii infection in Japan. J Vet Med Sci. 1998;60(7):781-90. [DOI:10.1292/jvms.60.781] [PMID]
40. Kato J, Nakamura T, Kuroda A, Ohtake H. Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci Biotechnol Biochem. 1999;63(1):155-61. [DOI:10.1271/bbb.63.155] [PMID]
41. Guo H-R, Gilmore R, Waag DM, Shireley L, Freund E. Prevalence of Coxiella burnetii infections among North Dakota sheep producers. Journal of occupational and environmental medicine. 1998:999-1006. [DOI:10.1097/00043764-199811000-00011] [PMID]
42. Eldin C, Melenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, et al. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev. 2017;30(1):115-90. [DOI:10.1128/CMR.00045-16] [PMID] [PMCID]
43. Angelakis E, Raoult D. Q fever. Vet Microbiol. 2010;140(3-4):297-309. [DOI:10.1016/j.vetmic.2009.07.016] [PMID]
44. Echeverría G, Reyna-Bello A, Minda-Aluisa E, Celi-Erazo M, Olmedo L, García HA, et al. Serological evidence of Coxiella burnetii infection in cattle and farm workers: is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance. 2019;12:701. [DOI:10.2147/IDR.S195940] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc