year 16, Issue 2 (March - April 2022)                   Iran J Med Microbiol 2022, 16(2): 165-172 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Diba Pradana A, Novi Sekarini D, Amelia Suma A, Maliza R. Study on the Antibacterial Effect from Moonmilk Pindul Cave, Indonesia. Iran J Med Microbiol. 2022; 16 (2) :165-172
URL: http://ijmm.ir/article-1-1473-en.html
1- Program Study of Biology, Faculty of Applied Science and Technology, Ahmad Dahlan University, Yogyakarta, Indonesia
2- Department of Biology, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia , ritamaliza@bio.uad.ac.id
Abstract:   (592 Views)

Background and Objective: Antibiotic resistance is the ability of microbes to survive antibiotic exposure with standard doses. Regular updating of antibiotics is one solution to overcome antibiotic resistance. One source with potential new antibiotics is moonmilk from caves because it contains various bacteria proven to have antibacterial activity. The objective of the present study is to explore the potential of moonmilk microbes from Pindul cave, Indonesia, as a source of new antibiotic compounds.
Materials and Methods: The antibiotic potency test was divided into six groups with various concentrations of isolated moonmilk bacteria (IMM) supernatant 25%, 50%, 75%, 100%, negative control (-), and positive control (+). All groups were further tested for antibiotic susceptibility using the disk diffusion (Kirby and Bauer) method to pathogenic resistant bacteria Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 25923 on Mueller Hinton agar medium. PCR and Sanger sequencing method using 16S rRNA primers was performed to identify species of isolated moonmilk bacteria.
Results: The 16S rRNA sequence analysis showed that the IMM shared a 99,64% (1399 nucleotide match) similarity with Bacillus licheniformis strain IND706. The results showed that moonmilk bacteria had antibacterial activity against E. coli ATCC 25922 and S. aureus ATCC 25923. The highest inhibition zone was observed for the bacterial extract concentration of 75% (42 mm) in E. coli ATCC 25922 and 100% (23 mm) in S. aureus ATCC 25923 medium.
Conclusion: IMM supernatant extract from Pindul cave, Indonesia, has the potential to control antibiotic-resistant bacterial pathogens.

Full-Text [PDF 972 kb]   (229 Downloads) |   |   Full-Text (HTML)  (174 Views)  
Type of Study: Brief Original Article | Subject: Antimicrobial Substances
Received: 2021/09/4 | Accepted: 2022/01/8 | ePublished: 2022/02/10

References
1. Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. Int J Appl Microbiol Biotechnol Res. 2016;4(2016):90-101.
2. Akova M. Epidemiology of antimicrobial resistance in bloodstream infections. Virulence. 2016;7(3):252-66. [DOI:10.1080/21505594.2016.1159366] [PMID] [PMCID]
3. Gol S, Pena RN, Rothschild MF, Tor M, Estany J. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Sci Rep. 2018;8(1):1-9.. [DOI:10.1038/s41598-020-72851-5] [PMID] [PMCID]
4. Jinghua M, Gaizhuang L, Qiaoli C. Pathogens and antibiotic resistance of children with community-acquired pneumonia. Biomed Res (0970-938X). 2017;28(20).
5. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645. [DOI:10.2147/IDR.S173867] [PMID] [PMCID]
6. Quinn GA, Banat AM, Abdelhameed AM, Banat IM. Streptomyces from traditional medicine: Sources of new innovations in antibiotic discovery. J Med Microbiol. 2020;69(8):1040. [DOI:10.1099/jmm.0.001232] [PMID] [PMCID]
7. Maciejewska M, Adam D, Naômé A, Martinet L, Tenconi E, Całusińska M, et al. Assessment of the potential role of Streptomyces in cave moonmilk formation. Front Microbiol. 2017;8:1181. [DOI:10.3389/fmicb.2017.01181] [PMID] [PMCID]
8. Maciejewska M, Adam D, Martinet L, Naômé A, Całusińska M, Delfosse P, Carnol M, Barton HA, Hayette MP, Smargiasso N, De Pauw E. A phenotypic and genotypic analysis of the antimicrobial potential of cultivable Streptomyces isolated from cave moonmilk deposits. Front Microbiol. 2016;7:1455. [DOI:10.3389/fmicb.2016.01455] [PMID] [PMCID]
9. Baskar S, Baskar R, Routh J. Biogenic evidences of moonmilk deposition in the Mawmluh cave, Meghalaya, India. Geomicrobiol J. 2011;28(3):252-65. [DOI:10.1080/01490451.2010.494096]
10. Kim Y, Cho JY, Kuk JH, Moon JH, Cho JI, Kim YC, et al. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, Chungkook-Jang. Curr Microbiol. 2004;48(4):312-7. [DOI:10.1007/s00284-003-4193-3] [PMID]
11. Ningsih RC. Kontribusi Objek Wisata Goa Pindul Terhadap Perekonomian Masyarakat. J Ekonomi Stud Pembangunan. 2013;14(1):67-79.
12. Hudzicki, J. Kirby-Bauer Disk Diffusion Susceptibility Test Protocol. Am Soc Microbiol. 2009; 1-23.
13. Miller AZ, Garcia‐Sanchez AM, Martin‐Sanchez PM, Costa Pereira MF, Spangenberg JE, Jurado V, et al. Origin of abundant moonmilk deposits in a subsurface granitic environment. Sedimentology. 2018 Aug;65(5):1482-503. [DOI:10.1111/sed.12431]
14. Zhu HZ, Zhang ZF, Zhou N, Jiang CY, Wang BJ, Cai L, Liu SJ. Diversity, distribution and co-occurrence patterns of bacterial communities in a karst cave system. Front Microbiol. 2019;10:1726. [DOI:10.3389/fmicb.2019.01726] [PMID] [PMCID]
15. Cirigliano A, Tomassetti MC, Di Pietro M, Mura F, Maneschi ML, Gentili MD, Cardazzo B, Arrighi C, Mazzoni C, Negri R, Rinaldi T. Calcite moonmilk of microbial origin in the Etruscan Tomba degli Scudi in Tarquinia, Italy. Sci Rep. 2018;8(1):1-0. [DOI:10.1038/s41598-018-34134-y] [PMID] [PMCID]
16. Rajan BM, Kannabiran K. Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. VITBRK2. Int J Molecul Cell Med. 2014;3(3):130.
17. Stoica RM, Moscovici MI, Tomulescu CA, Cășărică A, Băbeanu N, Popa O, et al. Antimicrobial compounds of the genus Bacillus: A review. Rom Biotechnol Lett. 2019;24(6):1111-9. [DOI:10.25083/rbl/24.6/1111.1119]
18. Callow RK, Hart PA. Antibiotic material from Bacillus licheniformis (Weigmann, emend. Gibson) active against species of Mycobacteria. Nature. 1946;157(3985):334-5.
19. Andreoli PM, Lenson PJ, Simonette AL, Vos YJ, Breteler H, van Lelyveld PH, AM LK. Bacillus licheniformis as a host for heterologous gene expression. InProceedings of the 2nd Netherlands Biotechnology Congress 1988 (pp. 151-155). Zeist: Netherlands Biotechnology Society.
20. Yang HJ, Kwon DY, Kim HJ, Kim MJ, Jung DY, Kang HJ, Kim DS, Kang S, Moon NR, Shin BK, Park S. Fermenting soybeans with Bacillus licheniformis potentiates their capacity to improve cognitive function and glucose homeostaisis in diabetic rats with experimental Alzheimer’s type dementia. Eur J Nutr. 2015 Feb;54(1):77-88. [DOI:10.1007/s00394-014-0687-y] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc