year 16, Issue 3 (May - June 2022)                   Iran J Med Microbiol 2022, 16(3): 186-196 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Lashtoo Aghaee B, Alikhani M Y, van Leeuwen W B, Mojtahedi A, Kazemi S, Karami P. Conventional Treatment of Burn Wound Infections versus Phage Therapy. Iran J Med Microbiol. 2022; 16 (3) :186-196
1- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
2- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran ,
3- University of Applied Sciences Leiden, Zernikedreef 11, Leiden, The Netherlands
4- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
5- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
6- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
Abstract:   (704 Views)

Wound infections are the primary cause of sepsis in burn wound patients and increase burn-related morbidity and mortality. Gram-negative and Gram-positive bacteria induce infections in burn wounds. Conventional antimicrobial therapy is recognized as the most successful therapeutic intervention to combat infections of burn wounds. Unfortunately, antimicrobial resistance could be catastrophic and lead to treatment failure. Burn wound infections need topical treatment. Phages as an alternative for antibiotics can be used as a monotherapy for infections with antibiotic-resistant pathogens or can be applied in combination with antibiotic therapy. Phages are species-specific bacterial natural viruses. Worldwide, many phage-producing companies are emerging. However, not many countries implement phage therapy in their patient management. Clinical trials are needed to convince the health care system in those countries that do not have confidence in phage therapy in infectious diseases. This study reviewed several aspects of phage therapy in burn wound patients.

Full-Text [PDF 505 kb]   (178 Downloads) |   |   Full-Text (HTML)  (229 Views)  
Type of Study: Review Article | Subject: Medical Bacteriology
Received: 2021/09/4 | Accepted: 2022/01/8 | ePublished: 2022/03/20

1. Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403-34. [DOI:10.1128/CMR.19.2.403-434.2006] [PMID] [PMCID]
2. Deitch EA. The management of burns. N Engl J Med. 1990;323(18):1249-53. [DOI:10.1056/NEJM199011013231806] [PMID]
3. Produced by: National Center for Injury Prevention and Control C, using WISQARS, Data Source: NEISS All Injury, population PobtCPSCfnoiBoCf, estimates. Accessed 10/13/2017.
4. Kravitz M. Immune consequences of burn injury. AACN Clin Issues Crit Care Nurs. 1993;4(2):399-413. [DOI:10.4037/15597768-1993-2017] [PMID]
5. Heideman M, Bengtsson A. The immunologic response to thermal injury. World J Surg. 1992;16(1):53-6. [DOI:10.1007/BF02067115] [PMID]
6. Pruitt BA, Jr., McManus AT, Kim SH, Goodwin CW. Burn wound infections: current status. World J Surg. 1998;22(2):135-45. [DOI:10.1007/s002689900361] [PMID]
7. Safdar N, Marx J, Meyer NA, Maki DG. Effectiveness of preemptive barrier precautions in controlling nosocomial colonization and infection by methicillin-resistant Staphylococcus aureus in a burn unit. Am J Infect Control. 2006;34(8):476-83. [DOI:10.1016/j.ajic.2006.01.011] [PMID]
8. Dai T, Huang YY, Sharma SK, Hashmi JT, Kurup DB, Hamblin MR. Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov. 2010;5(2):124-51. [DOI:10.2174/157489110791233522] [PMID] [PMCID]
9. Johnson BA, Anker H, Meleney FL. Bacitracin: A New Antibiotic Produced by a Member of the B. Subtilis Group. Science (New York, NY). 1945;102(2650):376-7. [DOI:10.1126/science.102.2650.376] [PMID]
10. Palmieri TL, Greenhalgh DG. Topical treatment of pediatric patients with burns: a practical guide. Am J Clin Dermatol. 2002;3(8):529-34. [DOI:10.2165/00128071-200203080-00003] [PMID]
11. Sinha R, Agarwal RK, Agarwal M. Povidone iodine plus neosporin in superficial burns--a continuing study. Burns. 1997;23(7-8):626-8. [DOI:10.1016/S0305-4179(97)00069-7]
12. Munster AM. Treatment of invasive Enterobacter cloacae burn wound sepsis with topical nitrofurazone. J Trauma. 1984;24(6):524-5. [DOI:10.1097/00005373-198406000-00010] [PMID]
13. Cho Lee AR, Leem H, Lee J, Park KC. Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials. 2005;26(22):4670-6. [DOI:10.1016/j.biomaterials.2004.11.041] [PMID]
14. Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns. 2000;26(2):131-8. [DOI:10.1016/S0305-4179(99)00116-3]
15. Fong J, Wood F. Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 2006;1(4):441-9. [DOI:10.2147/nano.2006.1.4.441] [PMID] [PMCID]
16. Garner JP, Heppell PS. Cerium nitrate in the management of burns. Burns. 2005;31(5):539-47. [DOI:10.1016/j.burns.2005.01.014] [PMID]
17. Zamora JL. Iodine toxicity. Ann Thorac Surg. 1986;41(4):462-3. [DOI:10.1016/S0003-4975(10)62714-2]
18. Ormiston MC, Seymour MT, Venn GE, Cohen RI, Fox JA. Controlled trial of Iodosorb in chronic venous ulcers. Br Med J (Clin Res Ed). 1985;291(6491):308-10. [DOI:10.1136/bmj.291.6491.308] [PMID] [PMCID]
19. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther. 2004;1(4):279-93. [DOI:10.1016/S1572-1000(05)00007-4]
20. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457-65. [DOI:10.1021/bm034130m] [PMID]
21. Mor A. Multifunctional host defense peptides: antiparasitic activities. The FEBS journal. 2009;276(22):6474-82. [DOI:10.1111/j.1742-4658.2009.07358.x] [PMID]
22. McNulty C RG, Mortensen JE. . An overview of the topical antimicrobial agents used in the treatment of burn wounds. Contin Educ.
23. WNTtWStffd-riW.
24. Wplobfwnaaun.
25. Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis. 2005;5(5):275-86. [DOI:10.1016/S1473-3099(05)70112-2]
26. Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis. 1998;4(4):551-60. [DOI:10.3201/eid0404.980405] [PMID] [PMCID]
27. McVay CS, Velasquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934-8. [DOI:10.1128/AAC.01028-06] [PMID] [PMCID]
28. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277-83.
29. Roope LSJ, Smith RD, Pouwels KB, Buchanan J, Abel L, Eibich P, et al. The challenge of antimicrobial resistance: What economics can contribute. Science (New York, NY). 2019;364(6435). [DOI:10.1126/science.aau4679] [PMID]
30. Chanishvili N. Phage therapy--history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res. 2012;83:3-40. [DOI:10.1016/B978-0-12-394438-2.00001-3] [PMID]
31. Abedon ST, Garcia P, Mullany P, Aminov R. Editorial: Phage Therapy: Past, Present and Future. Front Microbiol. 2017;8:981. [DOI:10.3389/fmicb.2017.00981] [PMID] [PMCID]
32. Dublanchet A, Bourne S. The epic of phage therapy. Can J Infect Dis Med Microbiol. 2007;18(1):15-8. [DOI:10.1155/2007/365761] [PMID] [PMCID]
33. Kuipers S, Ruth MM, Mientjes M, de Sevaux RGL, van Ingen J. A Dutch Case Report of Successful Treatment of Chronic Relapsing Urinary Tract Infection with Bacteriophages in a Renal Transplant Patient. Antimicrob Agents Chemother. 2019;64(1). [DOI:10.1128/AAC.01281-19] [PMID] [PMCID]
34. Mu A, McDonald D, Jarmusch AK, Martino C, Brennan C, Bryant M, et al. Assessment of the microbiome during bacteriophage therapy in combination with systemic antibiotics to treat a case of staphylococcal device infection. Microbiome. 2021;9(1):92. [DOI:10.1186/s40168-021-01026-9] [PMID] [PMCID]
35. Sulakvelidze A, Alavidze Z, Morris JG, Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649-59. [DOI:10.1128/AAC.45.3.649-659.2001] [PMID] [PMCID]
36. Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N, et al. Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model. Front Microbiol. 2018;9(326):326. [DOI:10.3389/fmicb.2018.00326] [PMID] [PMCID]
37. Abedon ST, Thomas-Abedon C. Phage therapy pharmacology. Curr Pharm Biotechnol. 2010;11(1):28-47. [DOI:10.2174/138920110790725410] [PMID]
38. Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage. 2011;1(2):66-85. [DOI:10.4161/bact.1.2.15845] [PMID] [PMCID]
39. Skurnik M, Strauch E. Phage therapy: facts and fiction. Int J Med Microbiol. 2006;296(1):5-14. [DOI:10.1016/j.ijmm.2005.09.002] [PMID]
40. Abedon ST. Information Phage Therapy Research Should Report. Pharmaceuticals (Basel). 2017;10(2):43. [DOI:10.3390/ph10020043] [PMID] [PMCID]
41. Gorski A, Miedzybrodzki R, Wegrzyn G, Jonczyk-Matysiak E, Borysowski J, Weber-Dabrowska B. Phage therapy: Current status and perspectives. Med Res Rev. 2020;40(1):459-63. [DOI:10.1002/med.21593] [PMID]
42. Aghaee BL, Khan Mirzaei M, Alikhani MY, Mojtahedi A, Maurice CF. Improving the Inhibitory Effect of Phages against Pseudomonas aeruginosa Isolated from a Burn Patient Using a Combination of Phages and Antibiotics. Viruses. 2021;13(2):334. [DOI:10.3390/v13020334] [PMID] [PMCID]
43. Loh B, Leptihn S. A Call For a Multidisciplinary Future of Phage Therapy to Combat Multi-drug Resistant Bacterial Infections. Infectious Microbes and Diseases. 2020;2(1):1-2. [DOI:10.1097/IM9.0000000000000018]
44. Wittebole X, De Roock S, Opal SMJV. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. 2014;5(1):226-35. [DOI:10.4161/viru.25991] [PMID] [PMCID]
45. Wright A, Hawkins CJCO. EE nggrd, and DR Harper (2009) A Controlled Clinical Trial of a Therapeutic Bacteriophage Preparation in Chronic Otitis Due to Antibiotic-resistant; a Preliminary Report of Efficacy.34(4):349-57. [DOI:10.1111/j.1749-4486.2009.01973.x] [PMID]
46. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection. 2017;61(10):e00954-17.
47. Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan DJE, medicine,, et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. 2018;2018(1):60-6. [DOI:10.1093/emph/eoy005] [PMID] [PMCID]
48. Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, et al. Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury-a case report. Critil Care. 2017;21(1):129. [DOI:10.1186/s13054-017-1709-y] [PMID] [PMCID]
49. Abedon ST. Phage
50. Rose T, Verbeken G, Vos DD, Merabishvili M, Vaneechoutte M, Lavigne R, et al. Experimental phage therapy of burn wound infection: difficult first steps. Int J Burns Trauma. 2014;4(2):66-73.
51. Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35-45. [DOI:10.1016/S1473-3099(18)30482-1]
52. Kumari S, Harjai K, Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol. 2011;60(Pt 2):205-10. [DOI:10.1099/jmm.0.018580-0] [PMID]
53. Kumari S, Harjai K, Chhibber S. Bacteriophage treatment of burn wound infection caused by Pseudomonas aeruginosa PAO in BALB/c mice. Am J Biomed Sci. 2009;1(4):385-94. [DOI:10.5099/aj090400385]
54. Vaitekenas A, Tai AS, Ramsay JP, Stick SM, Kicic A. Pseudomonas aeruginosa Resistance to Bacteriophages and Its Prevention by Strategic Therapeutic Cocktail Formulation. Antibiotics (Basel). 2021;10(2):145. [DOI:10.3390/antibiotics10020145] [PMID] [PMCID]
55. Dallal MMS, Nikkhahi F, Alimohammadi M, Douraghi M, Rajabi Z, Foroushani AR, Azimi A, Fardsanei F. Phage Therapy as an Approach to Control Salmonella enterica serotype Enteritidis Infection in Mice. Rev Soc Bras Med Trop. 2019 Nov 14;52:e20190290. [DOI:10.1590/0037-8682-0290-2019] [PMID]
56. Khalid A, Lin RCY, Iredell JR. A Phage Therapy Guide for Clinicians and Basic Scientists: Background and Highlighting Applications for Developing Countries. Front Microbiol. 2020;11(3417):599906. [DOI:10.3389/fmicb.2020.599906] [PMID] [PMCID]
57. Alves DR, Gaudion A, Bean JE, Perez Esteban P, Arnot TC, Harper DR, et al. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl Environ Microbiol. 2014;80(21):6694-703. [DOI:10.1128/AEM.01789-14] [PMID] [PMCID]
58. Phee A, Bondy-Denomy J, Kishen A, Basrani B, Azarpazhooh A, Maxwell K. Efficacy of bacteriophage treatment on Pseudomonas aeruginosa biofilms. J Endod. 2013;39(3):364-9. [DOI:10.1016/j.joen.2012.10.023] [PMID]
59. Chegini Z, Khoshbayan A, Taati Moghadam M, Farahani I, Jazireian P, Shariati A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020;19(1):45. [DOI:10.1186/s12941-020-00389-5] [PMID] [PMCID]
60. Tkhilaishvili T, Wang L, Perka C, Trampuz A, Gonzalez Moreno M. Using Bacteriophages as a Trojan Horse to the Killing of Dual-Species Biofilm Formed by Pseudomonas aeruginosa and Methicillin Resistant Staphylococcus aureus. Front Microbiol. 2020;11:695. [DOI:10.3389/fmicb.2020.00695] [PMID] [PMCID]
61. Tian F, Li J, Nazir A, Tong Y. Bacteriophage-A Promising Alternative Measure for Bacterial Biofilm Control. Infect Drug Resist. 2021;14:205. [DOI:10.2147/IDR.S290093] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc