year 16, Issue 4 (July - August 2022)                   Iran J Med Microbiol 2022, 16(4): 324-335 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadpour S, Hosseini Doust R. Synergistic Effects of Gold Nanoparticles Mixed with Gentamicin, Erythromycin, Clindamycin, Bacitracin, and Polymyxin B against Staphylococcus aureus, Staphylococcus saprophyticus, Staphylococcus epidermidis, Enterococcus faecium and Enterococcus faecalis. Iran J Med Microbiol 2022; 16 (4) :324-335
1- Department of Microbiology, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran
2- Department of Microbiology, Faculty of Advanced Sciences, Islamic Azad University of Medical Sciences, Tehran, Iran ,
Abstract:   (1280 Views)

Background and Objective: The majority of bacterial infections are now treatable using different classes of antibiotics. However, the world has faced a challenge called antimicrobial resistance that will diminish most antibiotics' beneficial impacts. A valuable strategy to prevent this adverse phenomenon is to increase the antibacterial effects of antibiotics using various materials as antibiotic enhancers. The aim of this project was to investigate the synergistic effects of gold nanoparticles (with a concentration of 100-200 µg/mL, a size of 16 nm, and an average zeta potential of -54.4 mV) and different antibiotics against some gram-positive cocci.
Methods: Standard Kirby-Bauer methods were used to test the antimicrobial properties of different concentrations of gold nanoparticles mixed with MIC levels of gentamycin, erythromycin, clindamycin, bacitracin, and polymyxin B against ATTC strains of S. aureus, S. saprophyticus, S. epidermidis, E. faecium, and E. faecalis.
Results: It was indicated that the 25:75 ratio of AuNPs with gentamicin led to a larger zone of inhibition against S. aureus, S. epidermidis, and E. faecalis compared with pure antibiotics. Moreover, this increase was found against E. faecalis when applying 25:75, 50:50, and 75:25 ratios of AuNPs with clindamycin. Similarly, an increase in the diameter of the zone of inhibition against S. epidermidis was observed when using 25 μL AuNPs with 75 μL bacitracin. Additionally, a synergistic antibacterial effect against S. saprophyticus was found when using AuNPs and polymyxin B with a ratio of 50:50.
Conclusion: It was concluded that suitable concentrations of gold nanoparticles could enhance the antibacterial activities of antibiotics.

Full-Text [PDF 1500 kb]   (467 Downloads) |   |   Full-Text (HTML)  (390 Views)  
Type of Study: Original Research Article | Subject: Antimicrobial Substances
Received: 2021/08/19 | Accepted: 2022/02/18 | ePublished: 2022/05/25

1. Jubeh B, Breijyeh Z, Karaman R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 2020;25(12):2888. [DOI:10.3390/molecules25122888] [PMID] [PMCID]
2. Hormozi SF, Vasei N, Aminianfar M, Darvishi M, Saeedi AA. Antibiotic resistance in patients suffering from nosocomial infections in Besat Hospital. Eur J Transl Myol. 2018;28(3). [DOI:10.4081/ejtm.2018.7594] [PMID] [PMCID]
3. Ma J, Liu J, Zhang Y, Wang D, Liu R, Liu G, et al. Bacitracin resistance and enhanced virulence of Streptococcus suis via a novel efflux pump. BMC Vet Res. 2019;15(1):1-11. [DOI:10.1186/s12917-019-2115-2] [PMID] [PMCID]
4. Khondker A, Rheinstädter MC. How do bacterial membranes resist polymyxin antibiotics? Commun Biol. 2020;3(1):1-4. [DOI:10.1038/s42003-020-0803-x] [PMID] [PMCID]
5. Schafhauser BH, Kristofco LA, de Oliveira CMR, Brooks BW. Global review and analysis of erythromycin in the environment: occurrence, bioaccumulation and antibiotic resistance hazards. Environ Pollut. 2018;238:440-51. [DOI:10.1016/j.envpol.2018.03.052] [PMID]
6. Sparo M, Delpech G, García Allende N. Impact on public health of the spread of high-level resistance to gentamicin and vancomycin in enterococci. Front Microbiol. 2018;9:3073. [DOI:10.3389/fmicb.2018.03073] [PMID] [PMCID]
7. Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387. [DOI:10.1101/cshperspect.a025387] [PMID] [PMCID]
8. Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A, Mlynarczyk G. In vitro effect of clindamycin against Bacteroides and Parabacteroides isolates in Poland. J Glob Antimicrob Resist. 2018;13:49-52. [DOI:10.1016/j.jgar.2017.11.001] [PMID]
9. Rather IA, Kim B-C, Bajpai VK, Park Y-H. Self-medication and antibiotic resistance: Crisis, current challenges, and prevention. Saudi J Biol Sci. 2017;24(4):808-12. [DOI:10.1016/j.sjbs.2017.01.004] [PMID] [PMCID]
10. Hillman T. Current methods for inhibiting antibiotic resistant bacteria by targeting bacterial cell metabolism and disrupting antibiotic elimination through the AcrAB-Tolc efflux pump. PeerJ Prepr. 2019;7:e27840v1. [DOI:10.7287/peerj.preprints.27840v1]
11. Baym M, Stone LK, Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science (80- ). 2016;351(6268). [DOI:10.1126/science.aad3292] [PMID] [PMCID]
12. Allahverdiyev AM, Kon KV, Abamor ES, Bagirova M, Rafailovich M. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev Anti Infect Ther. 2011;9(11):1035-52. [DOI:10.1586/eri.11.121] [PMID]
13. Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, et al. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int J Mol Sci. 2020;21(21):8019. [DOI:10.3390/ijms21218019] [PMID] [PMCID]
14. Raza A, Sime FB, Cabot PJ, Maqbool F, Roberts JA, Falconer JR. Solid nanoparticles for oral antimicrobial drug delivery: A review. Drug Discov Today. 2019;24(3):858-66. [DOI:10.1016/j.drudis.2019.01.004] [PMID]
15. Hussain S, Joo J, Kang J, Kim B, Braun GB, She Z-G, et al. Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy. Nat Biomed Eng. 2018;2(2):95-103. [DOI:10.1038/s41551-017-0187-5] [PMID] [PMCID]
16. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8(10):10682-6. [DOI:10.1021/nn5042625] [PMID] [PMCID]
17. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):1-20. [DOI:10.1186/s12951-017-0308-z] [PMID] [PMCID]
18. Zhang J, Guo W, Li Q, Wang Z, Liu S. The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci Nano. 2018;5(11):2482-99. [DOI:10.1039/C8EN00688A]
19. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019;12(7):908-31. [DOI:10.1016/j.arabjc.2017.05.011]
20. Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, et al. Distribution, translocation and accumulation of silver nanoparticles in rats. J Nanosci Nanotechnol. 2009;9(8):4924-32. [DOI:10.1166/jnn.2009.1269] [PMID]
21. Saliani M, Jalal R, Goharshadi EK. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells. Nanomedicine J. 2016;3(1):1-14.
22. Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, et al. Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mol Sci. 2019;20(10):2468. [DOI:10.3390/ijms20102468] [PMID] [PMCID]
23. Kato Y, Kikuchi F, Imura Y, Yoshimura E, Suzuki M. Various Shapes of Gold Nanoparticles Synthesized by Glycolipids Extracted from Lactobacillus casei. In: Biomineralization. Springer, Singapore; 2018. p. 259-65. [DOI:10.1007/978-981-13-1002-7_27]
24. Zhang X. Gold nanoparticles: recent advances in the biomedical applications. Cell Biochem Biophys. 2015;72(3):771-5. [DOI:10.1007/s12013-015-0529-4] [PMID]
25. Su C, Huang K, Li H-H, Lu Y-G, Zheng D-L. Antibacterial Properties of Functionalized Gold Nanoparticles and Their Application in Oral Biology. J Nanomater. 2020;2020. [DOI:10.1155/2020/5616379]
26. Chen Y-S, Hung Y-C, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858-64. [DOI:10.1007/s11671-009-9334-6] [PMID] [PMCID]
27. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-9. [DOI:10.1016/j.jpha.2015.11.005] [PMID] [PMCID]
28. Kowalska-Krochmal B, Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021;10(2):165. [DOI:10.3390/pathogens10020165] [PMID] [PMCID]
29. Institute C and LS. Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. Clinical and Laboratory Standards Institute Wayne, PA; 2017.
30. Yañez-Macías R, Muñoz-Bonilla A, Jesús-Tellez D, Marco A, Maldonado-Textle H, Guerrero-Sánchez C, et al. Combinations of antimicrobial polymers with nanomaterials and bioactives to improve biocidal therapies. Polymers (Basel). 2019;11(11):1789. [DOI:10.3390/polym11111789] [PMID] [PMCID]
31. Grace AN, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles-A brief study. Colloids Surfaces A Physicochem Eng Asp. 2007;297(1-3):63-70. [DOI:10.1016/j.colsurfa.2006.10.024]
32. Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012;78(8):2768. [DOI:10.1128/AEM.06513-11] [PMID] [PMCID]
33. Payne JN, Waghwani HK, Connor MG, Hamilton W, Tockstein S, Moolani H, et al. Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Front Microbiol. 2016;7:607. [DOI:10.3389/fmicb.2016.00607] [PMID] [PMCID]
34. Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20(32):6789-98. [DOI:10.1039/c0jm00817f]
35. Zawrah MF, El-Moez SA, Center D. Antimicrobial activities of gold nanoparticles against major foodborne pathogens. Life Sci J. 2011;8(4):37-44.
36. Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK, et al. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett. 2007;2(12):614. [DOI:10.1007/s11671-007-9104-2] [PMCID]
37. Nishanthi R, Malathi S, Palani P. Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics. Mater Sci Eng C. 2019;96:693-707. [DOI:10.1016/j.msec.2018.11.050] [PMID]
38. Gupta D, Singh A, Khan AU. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett. 2017;12(1):1-6. [DOI:10.1186/s11671-017-2222-6] [PMID] [PMCID]
39. Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46-57. [DOI:10.1016/j.addr.2017.09.015] [PMID] [PMCID]
40. Zhao Y, Jiang X. Multiple strategies to activate gold nanoparticles as antibiotics. Nanoscale. 2013;5(18):8340-50. [DOI:10.1039/c3nr01990j] [PMID]
41. Burygin GL, Khlebtsov BN, Shantrokha AN, Dykman LA, Bogatyrev VA, Khlebtsov NG. On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett. 2009;4(8):794. [DOI:10.1007/s11671-009-9316-8] [PMID] [PMCID]
42. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine Nanotechnology, Biol Med. 2007;3(2):168-71. [DOI:10.1016/j.nano.2007.02.001] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc