year 17, Issue 3 (May - June 2023)                   Iran J Med Microbiol 2023, 17(3): 288-293 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbani Z, Koupaei M, Saderi H, Amin Marashi S M, DehghanZadeh Z, Owlia P. Inhibitory Effect of Supernatant and Lysate of Saccharomyces cerevisiae on Expression of exoA Gene of Pseudomonas aeruginosa. Iran J Med Microbiol 2023; 17 (3) :288-293
1- Department of Microbiology, School of Medicine, Shahed University, Tehran, Iran
2- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
3- Department of Microbiology, Qazvin University of Medical Sciences, Qazvin, Iran
4- Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran ,
Abstract:   (653 Views)

Background and Aim: Pseudomonas aeruginosa is an important ubiquitous and especially common pathogen in the hospital. Exotoxin A that encoded by exoA gene has a role in pathogenesis of this bacterium. Today, probiotics are widely used in the treatment and prevention of diseases. The present study aimed to study the Saccharomyces cerevisiae S3 effect on the expression of exoA gene.
Materials and Methods: S. cerevisiae S3 supernatant and lysate were prepared. Subminimum inhibitory concentrations (sub-MIC) of extracts were used to P. aeruginosa PAO1. The level of exoA expression was measured with real-time PCR method.
Results: Lysate extract had a reducing effect on toxin gene expression, but unlike lysate, supernatant had an increasing effect on gene expression.
Conclusion: We demonstrated that S. cerevisiae S3 had an inhibitory effect on Exotoxin A virulence factor of P. aeruginosa. We suggest doing more experiments on the effect of S. cerevisiae on other virulence factors of P. aeruginosa and pathogens.

Full-Text [PDF 579 kb]   (168 Downloads) |   |   Full-Text (HTML)  (104 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2022/10/25 | Accepted: 2023/03/28 | ePublished: 2023/06/26

1. Meng L, Zhou S, Xu X, Li D, Lin Y, Lyu F, et al. A multi-scale approach to investigate adhesion properties of Pseudomonas aeruginosa PAO1 to Geotrichum candidum LG-8, a potential probiotic yeast. Foods. 2020;9(7):912. [DOI:10.3390/foods9070912] [PMID] [PMCID]
2. Peix A, Ramírez-Bahena M-H, Velázquez E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect Genet Evol. 2009;9(6):1132-47. [DOI:10.1016/j.meegid.2009.08.001] [PMID]
3. Michalska M, Wolf P. Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol. 2015;6(15):963. [DOI:10.3389/fmicb.2015.00963] [PMID] [PMCID]
4. McEwan Deborah L, Kirienko Natalia V, Ausubel Frederick M. Host Translational Inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an Immune Response in Caenorhabditis elegans. Cell Host Microbe. 2012;11(4):364-74. [DOI:10.1016/j.chom.2012.02.007] [PMID] [PMCID]
5. Clark LC, Hodgkin J. Commensals, probiotics and pathogens in the Caenorhabditis elegans model. Cell Microbiol. 2014;16(1):27-38. [DOI:10.1111/cmi.12234] [PMID]
6. Da Silva NA, Srikrishnan S. Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Res. 2012;12(2):197-214. [DOI:10.1111/j.1567-1364.2011.00769.x] [PMID]
7. Douradinha B, Reis VCB, Rogers MB, Torres FAG, Evans JD, Marques Jr ETA. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii. Bioengineered. 2014;5(1):21-9. [DOI:10.4161/bioe.26271] [PMID] [PMCID]
8. Staniszewski A, Kordowska-Wiater M. Probiotic and potentially probiotic yeasts-characteristics and food application. Foods. 2021;10(6):1306. [DOI:10.3390/foods10061306] [PMID] [PMCID]
9. Argenta A, Satish L, Gallo P, Liu F, Kathju S. Local application of probiotic bacteria prophylaxes against sepsis and death resulting from burn wound infection. PloS One. 2016;11(10):e0165294. [DOI:10.1371/journal.pone.0165294] [PMID] [PMCID]
10. Al-Azzawi MKA, Makharmash JH, Al-Malkey NK. The effect of Lactobacillus species on the Pseudomonas aeruginosa. Drug Invent Today. 2020;14(2).
11. Hudson LE, McDermott CD, Stewart TP, Hudson WH, Rios D, Fasken MB, et al. Characterization of the probiotic yeast Saccharomyces boulardii in the healthy mucosal immune system. PLoS One. 2016;11(4):e0153351. [DOI:10.1371/journal.pone.0153351] [PMID] [PMCID]
12. Krasowska A, Murzyn A, Dyjankiewicz A, Łukaszewicz M, Dziadkowiec D. The antagonistic effect of Saccharomyces boulardii on Candida albicans filamentation, adhesion and biofilm formation. FEMS Yeast Res. 2009;9(8):1312-21. [DOI:10.1111/j.1567-1364.2009.00559.x] [PMID]
13. Joshi S, Kaur A, Sharma P, Harjai K, Capalash N. Lactonase-expressing Lactobacillusplantarum NC8 attenuates the virulence factors of multiple drug resistant Pseudomonas aeruginosa in co-culturing environment. World J Microbiol Biotechnol. 2014;30(8):2241-9. [DOI:10.1007/s11274-014-1645-9] [PMID]
14. Chelliah R, Choi J-G, Hwang S-b, Park B-J, Daliri EB-M, Kim S-H, et al. In vitro and in vivo defensive effect of probiotic LAB against Pseudomonas aeruginosa using Caenorhabditis elegans model. Virulence. 2018;9(1):1489-507. [DOI:10.1080/21505594.2018.1518088] [PMID] [PMCID]
15. Datta S, Timson DJ, Annapure US. Antioxidant properties and global metabolite screening of the probiotic yeast Saccharomyces cerevisiae var. boulardii. J Sci Food Agric. 2017;97(9):3039-49. [DOI:10.1002/jsfa.8147] [PMID]
16. Shokri D, Khorasgani MR, Mohkam M, Fatemi SM, Ghasemi Y, Taheri-Kafrani A. The Inhibition Effect of Lactobacilli Against Growth and Biofilm Formation of Pseudomonas aeruginosa. Probiotics Antimicrob Proteins. 2018;10(1):34-42. [DOI:10.1007/s12602-017-9267-9] [PMID]
17. Ramos AN, Sesto Cabral ME, Arena ME, Arrighi CF, Arroyo Aguilar AA, Valdéz JC. Compounds from Lactobacillus plantarum culture supernatants with potential pro-healing and anti-pathogenic properties in skin chronic wounds. Pharm Biol. 2015;53(3):350-8. [DOI:10.3109/13880209.2014.920037] [PMID]
18. Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, et al. Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol. 2001;68(1):135-40. [DOI:10.1016/S0168-1605(01)00465-2] [PMID]
19. Todorov SD, Dicks LMT. Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme Microb Technol. 2005;36(2):318-26. [DOI:10.1016/j.enzmictec.2004.09.009]
20. Etienne-Mesmin L, Livrelli V, Privat M, Denis S, Cardot J-M, Alric M, et al. Effect of a New Probiotic Saccharomyces cerevisiae Strain on Survival of Escherichia coli O157:H7 in a Dynamic Gastrointestinal Model. Appl Environ Microbiol. 2011;77(3):1127-31. [DOI:10.1128/AEM.02130-10] [PMID] [PMCID]
21. Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain's organic acid. Microb Pathog. 2018;121:190-7. [DOI:10.1016/j.micpath.2018.05.042] [PMID]
22. Fakruddin M, Hossain MN, Ahmed MM. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement Altern Med. 2017;17(1):64. [DOI:10.1186/s12906-017-1591-9] [PMID] [PMCID]
23. Cho D-Y, Skinner D, Lim DJ, McLemore JG, Koch CG, Zhang S, et al. The impact of Lactococcus lactis (probiotic nasal rinse) co-culture on growth of patient-derived strains of Pseudomonas aeruginosa. Int Forum Allergy Rhinol. 2020;10(4):444-9. [DOI:10.1002/alr.22521] [PMID] [PMCID]
24. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y. Probiotic Bifidobacteria Protect Mice from Lethal Infection with Shiga Toxin-Producing Escherichia coli O157:H7. Infect Immun. 2004;72(4):2240-7. [DOI:10.1128/IAI.72.4.2240-2247.2004] [PMID] [PMCID]
25. Carey CM, Kostrzynska M, Ojha S, Thompson S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods. 2008;73(2):125-32. [DOI:10.1016/j.mimet.2008.01.014] [PMID]
26. Valdés-Varela L, Alonso-Guervos M, García-Suárez O, Gueimonde M, Ruas-Madiedo P. Screening of bifidobacteria and lactobacilli able to antagonize the cytotoxic effect of Clostridium difficile upon intestinal epithelial HT29 monolayer. Front Microbiol. 2016;7:577. [DOI:10.3389/fmicb.2016.00577] [PMID] [PMCID]
27. Trejo FM, Pérez PF, De Antoni GL. Co-culture with potentially probiotic microorganisms antagonises virulence factors of Clostridium difficile in vitro. Antonie Leeuwenhoek. 2010;98(1):19-29. [DOI:10.1007/s10482-010-9424-6] [PMID]
28. Ripert G, Racedo Silvia M, Elie A-M, Jacquot C, Bressollier P, Urdaci Maria C. Secreted Compounds of the Probiotic Bacillus clausii Strain O/C Inhibit the Cytotoxic Effects Induced by Clostridium difficile and Bacillus cereus Toxins. Antimicrob Agents Chemother. 2016;60(6):3445-54. [DOI:10.1128/AAC.02815-15] [PMID] [PMCID]
29. DehghanZadeh Z, Koupaei M, Ghorbani Z, Saderi H, Marashi SMA, Owlia P. Inhibitory effect of Saccharomyces cerevisiae supernatant and lysate on expression of lasB and apl genes of Pseudomonas aeruginosa. Gene Rep. 2021;24:101247. [DOI:10.1016/j.genrep.2021.101247]
30. Ansari F, Alian Samakkhah S, Bahadori A, Jafari SM, Ziaee M, Khodayari MT, et al. Health-promoting properties of Saccharomyces cerevisiae var. boulardii as a probiotic; characteristics, isolation, and applications in dairy products. Crit Rev Food Sci Nutr. 2023;63(4):457-85. [DOI:10.1080/10408398.2021.1949577] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc